Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imanonrel Structured version   Visualization version   GIF version

Theorem imanonrel 43554
Description: An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
imanonrel ((𝐴𝐴) “ 𝐵) = ∅

Proof of Theorem imanonrel
StepHypRef Expression
1 df-ima 5659 . 2 ((𝐴𝐴) “ 𝐵) = ran ((𝐴𝐴) ↾ 𝐵)
2 resnonrel 43553 . . 3 ((𝐴𝐴) ↾ 𝐵) = ∅
32rneqi 5909 . 2 ran ((𝐴𝐴) ↾ 𝐵) = ran ∅
4 rn0 5897 . 2 ran ∅ = ∅
51, 3, 43eqtri 2757 1 ((𝐴𝐴) “ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3919  c0 4304  ccnv 5645  ran crn 5647  cres 5648  cima 5649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator