![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel1 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel1 | ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5509 | . . . 4 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) | |
2 | cnvnonrel 38664 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 2 | coeq2i 5484 | . . . 4 ⊢ (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) = (◡𝐵 ∘ ∅) |
4 | co02 5866 | . . . 4 ⊢ (◡𝐵 ∘ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2823 | . . 3 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
6 | 5 | cnveqi 5498 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ◡∅ |
7 | relco 5850 | . . 3 ⊢ Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) | |
8 | dfrel2 5798 | . . 3 ⊢ (Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) ↔ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵)) | |
9 | 7, 8 | mpbi 222 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) |
10 | cnv0 5751 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2827 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∖ cdif 3764 ∅c0 4113 ◡ccnv 5309 ∘ ccom 5314 Rel wrel 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 |
This theorem is referenced by: cnvtrcl0 38703 |
Copyright terms: Public domain | W3C validator |