![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel1 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel1 | ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5910 | . . . 4 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) | |
2 | cnvnonrel 43550 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 2 | coeq2i 5885 | . . . 4 ⊢ (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) = (◡𝐵 ∘ ∅) |
4 | co02 6291 | . . . 4 ⊢ (◡𝐵 ∘ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2772 | . . 3 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
6 | 5 | cnveqi 5899 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ◡∅ |
7 | relco 6138 | . . 3 ⊢ Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) | |
8 | dfrel2 6220 | . . 3 ⊢ (Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) ↔ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵)) | |
9 | 7, 8 | mpbi 230 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) |
10 | cnv0 6172 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2776 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∅c0 4352 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 |
This theorem is referenced by: cnvtrcl0 43588 |
Copyright terms: Public domain | W3C validator |