Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel1 Structured version   Visualization version   GIF version

Theorem cononrel1 42335
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel1 ((𝐴𝐴) ∘ 𝐵) = ∅

Proof of Theorem cononrel1
StepHypRef Expression
1 cnvco 5885 . . . 4 ((𝐴𝐴) ∘ 𝐵) = (𝐵(𝐴𝐴))
2 cnvnonrel 42329 . . . . 5 (𝐴𝐴) = ∅
32coeq2i 5860 . . . 4 (𝐵(𝐴𝐴)) = (𝐵 ∘ ∅)
4 co02 6259 . . . 4 (𝐵 ∘ ∅) = ∅
51, 3, 43eqtri 2764 . . 3 ((𝐴𝐴) ∘ 𝐵) = ∅
65cnveqi 5874 . 2 ((𝐴𝐴) ∘ 𝐵) =
7 relco 6107 . . 3 Rel ((𝐴𝐴) ∘ 𝐵)
8 dfrel2 6188 . . 3 (Rel ((𝐴𝐴) ∘ 𝐵) ↔ ((𝐴𝐴) ∘ 𝐵) = ((𝐴𝐴) ∘ 𝐵))
97, 8mpbi 229 . 2 ((𝐴𝐴) ∘ 𝐵) = ((𝐴𝐴) ∘ 𝐵)
10 cnv0 6140 . 2 ∅ = ∅
116, 9, 103eqtr3i 2768 1 ((𝐴𝐴) ∘ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3945  c0 4322  ccnv 5675  ccom 5680  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685
This theorem is referenced by:  cnvtrcl0  42367
  Copyright terms: Public domain W3C validator