| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel1 | Structured version Visualization version GIF version | ||
| Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| cononrel1 | ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 5849 | . . . 4 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) | |
| 2 | cnvnonrel 43577 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
| 3 | 2 | coeq2i 5824 | . . . 4 ⊢ (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) = (◡𝐵 ∘ ∅) |
| 4 | co02 6233 | . . . 4 ⊢ (◡𝐵 ∘ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2756 | . . 3 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
| 6 | 5 | cnveqi 5838 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ◡∅ |
| 7 | relco 6079 | . . 3 ⊢ Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) | |
| 8 | dfrel2 6162 | . . 3 ⊢ (Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) ↔ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵)) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) |
| 10 | cnv0 6113 | . 2 ⊢ ◡∅ = ∅ | |
| 11 | 6, 9, 10 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∅c0 4296 ◡ccnv 5637 ∘ ccom 5642 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 |
| This theorem is referenced by: cnvtrcl0 43615 |
| Copyright terms: Public domain | W3C validator |