Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel1 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel1 | ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5783 | . . . 4 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) | |
2 | cnvnonrel 41085 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 2 | coeq2i 5758 | . . . 4 ⊢ (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) = (◡𝐵 ∘ ∅) |
4 | co02 6153 | . . . 4 ⊢ (◡𝐵 ∘ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2770 | . . 3 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
6 | 5 | cnveqi 5772 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ◡∅ |
7 | relco 6137 | . . 3 ⊢ Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) | |
8 | dfrel2 6081 | . . 3 ⊢ (Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) ↔ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵)) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) |
10 | cnv0 6033 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∅c0 4253 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 |
This theorem is referenced by: cnvtrcl0 41123 |
Copyright terms: Public domain | W3C validator |