![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel1 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel1 | ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5885 | . . . 4 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) | |
2 | cnvnonrel 42329 | . . . . 5 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
3 | 2 | coeq2i 5860 | . . . 4 ⊢ (◡𝐵 ∘ ◡(𝐴 ∖ ◡◡𝐴)) = (◡𝐵 ∘ ∅) |
4 | co02 6259 | . . . 4 ⊢ (◡𝐵 ∘ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2764 | . . 3 ⊢ ◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
6 | 5 | cnveqi 5874 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ◡∅ |
7 | relco 6107 | . . 3 ⊢ Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) | |
8 | dfrel2 6188 | . . 3 ⊢ (Rel ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) ↔ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵)) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ◡◡((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) |
10 | cnv0 6140 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2768 | 1 ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3945 ∅c0 4322 ◡ccnv 5675 ∘ ccom 5680 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 |
This theorem is referenced by: cnvtrcl0 42367 |
Copyright terms: Public domain | W3C validator |