Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel1 Structured version   Visualization version   GIF version

Theorem cononrel1 41091
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel1 ((𝐴𝐴) ∘ 𝐵) = ∅

Proof of Theorem cononrel1
StepHypRef Expression
1 cnvco 5783 . . . 4 ((𝐴𝐴) ∘ 𝐵) = (𝐵(𝐴𝐴))
2 cnvnonrel 41085 . . . . 5 (𝐴𝐴) = ∅
32coeq2i 5758 . . . 4 (𝐵(𝐴𝐴)) = (𝐵 ∘ ∅)
4 co02 6153 . . . 4 (𝐵 ∘ ∅) = ∅
51, 3, 43eqtri 2770 . . 3 ((𝐴𝐴) ∘ 𝐵) = ∅
65cnveqi 5772 . 2 ((𝐴𝐴) ∘ 𝐵) =
7 relco 6137 . . 3 Rel ((𝐴𝐴) ∘ 𝐵)
8 dfrel2 6081 . . 3 (Rel ((𝐴𝐴) ∘ 𝐵) ↔ ((𝐴𝐴) ∘ 𝐵) = ((𝐴𝐴) ∘ 𝐵))
97, 8mpbi 229 . 2 ((𝐴𝐴) ∘ 𝐵) = ((𝐴𝐴) ∘ 𝐵)
10 cnv0 6033 . 2 ∅ = ∅
116, 9, 103eqtr3i 2774 1 ((𝐴𝐴) ∘ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  c0 4253  ccnv 5579  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589
This theorem is referenced by:  cnvtrcl0  41123
  Copyright terms: Public domain W3C validator