MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcllem Structured version   Visualization version   GIF version

Theorem infcllem 9246
Description: Lemma for infcl 9247, inflb 9248, infglb 9249, etc. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcllem (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcllem
StepHypRef Expression
1 infcl.2 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2 vex 3436 . . . . . . . 8 𝑥 ∈ V
3 vex 3436 . . . . . . . 8 𝑦 ∈ V
42, 3brcnv 5791 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
54bicomi 223 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
65notbii 320 . . . . 5 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
76ralbii 3092 . . . 4 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
83, 2brcnv 5791 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
98bicomi 223 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3436 . . . . . . . . 9 𝑧 ∈ V
113, 10brcnv 5791 . . . . . . . 8 (𝑦𝑅𝑧𝑧𝑅𝑦)
1211bicomi 223 . . . . . . 7 (𝑧𝑅𝑦𝑦𝑅𝑧)
1312rexbii 3181 . . . . . 6 (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
149, 13imbi12i 351 . . . . 5 ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1514ralbii 3092 . . . 4 (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
167, 15anbi12i 627 . . 3 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1716rexbii 3181 . 2 (∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
181, 17sylib 217 1 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wral 3064  wrex 3065   class class class wbr 5074   Or wor 5502  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597
This theorem is referenced by:  infcl  9247  inflb  9248  infglb  9249  infglbb  9250  infiso  9267
  Copyright terms: Public domain W3C validator