Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infcllem | Structured version Visualization version GIF version |
Description: Lemma for infcl 9177, inflb 9178, infglb 9179, etc. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infcllem | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcl.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5780 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | 4 | bicomi 223 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ 𝑥◡𝑅𝑦) |
6 | 5 | notbii 319 | . . . . 5 ⊢ (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥◡𝑅𝑦) |
7 | 6 | ralbii 3090 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦) |
8 | 3, 2 | brcnv 5780 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 8 | bicomi 223 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥) |
10 | vex 3426 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 3, 10 | brcnv 5780 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
12 | 11 | bicomi 223 | . . . . . . 7 ⊢ (𝑧𝑅𝑦 ↔ 𝑦◡𝑅𝑧) |
13 | 12 | rexbii 3177 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 𝑧𝑅𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) |
14 | 9, 13 | imbi12i 350 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ↔ (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) |
15 | 14 | ralbii 3090 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) |
16 | 7, 15 | anbi12i 626 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
17 | 16 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
18 | 1, 17 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 Or wor 5493 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: infcl 9177 inflb 9178 infglb 9179 infglbb 9180 infiso 9197 |
Copyright terms: Public domain | W3C validator |