![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcllem | Structured version Visualization version GIF version |
Description: Lemma for infcl 8682, inflb 8683, infglb 8684, etc. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infcl.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infcllem | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcl.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
2 | vex 3401 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 3401 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5550 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | 4 | bicomi 216 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ 𝑥◡𝑅𝑦) |
6 | 5 | notbii 312 | . . . . 5 ⊢ (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥◡𝑅𝑦) |
7 | 6 | ralbii 3162 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦) |
8 | 3, 2 | brcnv 5550 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 8 | bicomi 216 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥) |
10 | vex 3401 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 3, 10 | brcnv 5550 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
12 | 11 | bicomi 216 | . . . . . . 7 ⊢ (𝑧𝑅𝑦 ↔ 𝑦◡𝑅𝑧) |
13 | 12 | rexbii 3224 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 𝑧𝑅𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) |
14 | 9, 13 | imbi12i 342 | . . . . 5 ⊢ ((𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ↔ (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) |
15 | 14 | ralbii 3162 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) |
16 | 7, 15 | anbi12i 620 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
17 | 16 | rexbii 3224 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
18 | 1, 17 | sylib 210 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∀wral 3090 ∃wrex 3091 class class class wbr 4886 Or wor 5273 ◡ccnv 5354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-cnv 5363 |
This theorem is referenced by: infcl 8682 inflb 8683 infglb 8684 infglbb 8685 infiso 8702 |
Copyright terms: Public domain | W3C validator |