MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcllem Structured version   Visualization version   GIF version

Theorem infcllem 9446
Description: Lemma for infcl 9447, inflb 9448, infglb 9449, etc. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcllem (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcllem
StepHypRef Expression
1 infcl.2 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2 vex 3454 . . . . . . . 8 𝑥 ∈ V
3 vex 3454 . . . . . . . 8 𝑦 ∈ V
42, 3brcnv 5849 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
54bicomi 224 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
65notbii 320 . . . . 5 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
76ralbii 3076 . . . 4 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
83, 2brcnv 5849 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
98bicomi 224 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3454 . . . . . . . . 9 𝑧 ∈ V
113, 10brcnv 5849 . . . . . . . 8 (𝑦𝑅𝑧𝑧𝑅𝑦)
1211bicomi 224 . . . . . . 7 (𝑧𝑅𝑦𝑦𝑅𝑧)
1312rexbii 3077 . . . . . 6 (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
149, 13imbi12i 350 . . . . 5 ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1514ralbii 3076 . . . 4 (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
167, 15anbi12i 628 . . 3 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1716rexbii 3077 . 2 (∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
181, 17sylib 218 1 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3045  wrex 3054   class class class wbr 5110   Or wor 5548  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649
This theorem is referenced by:  infcl  9447  inflb  9448  infglb  9449  infglbb  9450  infiso  9468
  Copyright terms: Public domain W3C validator