Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneint Structured version   Visualization version   GIF version

Theorem fneint 35697
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
Assertion
Ref Expression
fneint (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃

Proof of Theorem fneint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2w 2816 . . . . 5 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21elrab 3683 . . . 4 (𝑦 ∈ {𝑥𝐴𝑃𝑥} ↔ (𝑦𝐴𝑃𝑦))
3 fnessex 35695 . . . . . . 7 ((𝐴Fne𝐵𝑦𝐴𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
433expb 1119 . . . . . 6 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
5 eleq2w 2816 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
65intminss 4978 . . . . . . . . 9 ((𝑧𝐵𝑃𝑧) → {𝑥𝐵𝑃𝑥} ⊆ 𝑧)
7 sstr 3990 . . . . . . . . 9 (( {𝑥𝐵𝑃𝑥} ⊆ 𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
86, 7sylan 579 . . . . . . . 8 (((𝑧𝐵𝑃𝑧) ∧ 𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
98expl 457 . . . . . . 7 (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
109rexlimiv 3147 . . . . . 6 (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
114, 10syl 17 . . . . 5 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1211ex 412 . . . 4 (𝐴Fne𝐵 → ((𝑦𝐴𝑃𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
132, 12biimtrid 241 . . 3 (𝐴Fne𝐵 → (𝑦 ∈ {𝑥𝐴𝑃𝑥} → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
1413ralrimiv 3144 . 2 (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
15 ssint 4968 . 2 ( {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥} ↔ ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1614, 15sylibr 233 1 (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3060  wrex 3069  {crab 3431  wss 3948   cint 4950   class class class wbr 5148  Fnecfne 35685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17396  df-fne 35686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator