Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneint Structured version   Visualization version   GIF version

Theorem fneint 36287
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
Assertion
Ref Expression
fneint (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃

Proof of Theorem fneint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2w 2817 . . . . 5 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21elrab 3669 . . . 4 (𝑦 ∈ {𝑥𝐴𝑃𝑥} ↔ (𝑦𝐴𝑃𝑦))
3 fnessex 36285 . . . . . . 7 ((𝐴Fne𝐵𝑦𝐴𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
433expb 1120 . . . . . 6 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
5 eleq2w 2817 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
65intminss 4947 . . . . . . . . 9 ((𝑧𝐵𝑃𝑧) → {𝑥𝐵𝑃𝑥} ⊆ 𝑧)
7 sstr 3965 . . . . . . . . 9 (( {𝑥𝐵𝑃𝑥} ⊆ 𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
86, 7sylan 580 . . . . . . . 8 (((𝑧𝐵𝑃𝑧) ∧ 𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
98expl 457 . . . . . . 7 (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
109rexlimiv 3132 . . . . . 6 (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
114, 10syl 17 . . . . 5 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1211ex 412 . . . 4 (𝐴Fne𝐵 → ((𝑦𝐴𝑃𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
132, 12biimtrid 242 . . 3 (𝐴Fne𝐵 → (𝑦 ∈ {𝑥𝐴𝑃𝑥} → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
1413ralrimiv 3129 . 2 (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
15 ssint 4937 . 2 ( {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥} ↔ ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1614, 15sylibr 234 1 (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  wrex 3059  {crab 3413  wss 3924   cint 4919   class class class wbr 5116  Fnecfne 36275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-topgen 17442  df-fne 36276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator