![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneint | Structured version Visualization version GIF version |
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fneint | ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2w 2842 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
2 | 1 | elrab 3588 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) |
3 | fnessex 33252 | . . . . . . 7 ⊢ ((𝐴Fne𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
4 | 3 | 3expb 1101 | . . . . . 6 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
5 | eleq2w 2842 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) | |
6 | 5 | intminss 4771 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧) |
7 | sstr 3859 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
8 | 6, 7 | sylan 572 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
9 | 8 | expl 450 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → ((𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
10 | 9 | rexlimiv 3218 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
12 | 11 | ex 405 | . . . 4 ⊢ (𝐴Fne𝐵 → ((𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
13 | 2, 12 | syl5bi 234 | . . 3 ⊢ (𝐴Fne𝐵 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
14 | 13 | ralrimiv 3124 | . 2 ⊢ (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
15 | ssint 4761 | . 2 ⊢ (∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
16 | 14, 15 | sylibr 226 | 1 ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 {crab 3085 ⊆ wss 3822 ∩ cint 4745 class class class wbr 4925 Fnecfne 33242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-int 4746 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-topgen 16571 df-fne 33243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |