| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneint | Structured version Visualization version GIF version | ||
| Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneint | ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2w 2825 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
| 2 | 1 | elrab 3692 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) |
| 3 | fnessex 36347 | . . . . . . 7 ⊢ ((𝐴Fne𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
| 4 | 3 | 3expb 1121 | . . . . . 6 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
| 5 | eleq2w 2825 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) | |
| 6 | 5 | intminss 4974 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧) |
| 7 | sstr 3992 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
| 8 | 6, 7 | sylan 580 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
| 9 | 8 | expl 457 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → ((𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
| 10 | 9 | rexlimiv 3148 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
| 11 | 4, 10 | syl 17 | . . . . 5 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝐴Fne𝐵 → ((𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
| 13 | 2, 12 | biimtrid 242 | . . 3 ⊢ (𝐴Fne𝐵 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
| 14 | 13 | ralrimiv 3145 | . 2 ⊢ (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
| 15 | ssint 4964 | . 2 ⊢ (∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
| 16 | 14, 15 | sylibr 234 | 1 ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 ⊆ wss 3951 ∩ cint 4946 class class class wbr 5143 Fnecfne 36337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 df-fne 36338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |