Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneint | Structured version Visualization version GIF version |
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fneint | ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2w 2822 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
2 | 1 | elrab 3617 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) |
3 | fnessex 34462 | . . . . . . 7 ⊢ ((𝐴Fne𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
4 | 3 | 3expb 1118 | . . . . . 6 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
5 | eleq2w 2822 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) | |
6 | 5 | intminss 4902 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧) |
7 | sstr 3925 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
8 | 6, 7 | sylan 579 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
9 | 8 | expl 457 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → ((𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
10 | 9 | rexlimiv 3208 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝐴Fne𝐵 → ((𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
13 | 2, 12 | syl5bi 241 | . . 3 ⊢ (𝐴Fne𝐵 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
14 | 13 | ralrimiv 3106 | . 2 ⊢ (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
15 | ssint 4892 | . 2 ⊢ (∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∩ cint 4876 class class class wbr 5070 Fnecfne 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topgen 17071 df-fne 34453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |