Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneint Structured version   Visualization version   GIF version

Theorem fneint 36343
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
Assertion
Ref Expression
fneint (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃

Proof of Theorem fneint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2w 2813 . . . . 5 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
21elrab 3662 . . . 4 (𝑦 ∈ {𝑥𝐴𝑃𝑥} ↔ (𝑦𝐴𝑃𝑦))
3 fnessex 36341 . . . . . . 7 ((𝐴Fne𝐵𝑦𝐴𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
433expb 1120 . . . . . 6 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
5 eleq2w 2813 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
65intminss 4941 . . . . . . . . 9 ((𝑧𝐵𝑃𝑧) → {𝑥𝐵𝑃𝑥} ⊆ 𝑧)
7 sstr 3958 . . . . . . . . 9 (( {𝑥𝐵𝑃𝑥} ⊆ 𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
86, 7sylan 580 . . . . . . . 8 (((𝑧𝐵𝑃𝑧) ∧ 𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
98expl 457 . . . . . . 7 (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
109rexlimiv 3128 . . . . . 6 (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
114, 10syl 17 . . . . 5 ((𝐴Fne𝐵 ∧ (𝑦𝐴𝑃𝑦)) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1211ex 412 . . . 4 (𝐴Fne𝐵 → ((𝑦𝐴𝑃𝑦) → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
132, 12biimtrid 242 . . 3 (𝐴Fne𝐵 → (𝑦 ∈ {𝑥𝐴𝑃𝑥} → {𝑥𝐵𝑃𝑥} ⊆ 𝑦))
1413ralrimiv 3125 . 2 (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
15 ssint 4931 . 2 ( {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥} ↔ ∀𝑦 ∈ {𝑥𝐴𝑃𝑥} {𝑥𝐵𝑃𝑥} ⊆ 𝑦)
1614, 15sylibr 234 1 (𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917   cint 4913   class class class wbr 5110  Fnecfne 36331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413  df-fne 36332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator