![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneint | Structured version Visualization version GIF version |
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fneint | ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2w 2828 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | |
2 | 1 | elrab 3708 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) |
3 | fnessex 36312 | . . . . . . 7 ⊢ ((𝐴Fne𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
4 | 3 | 3expb 1120 | . . . . . 6 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
5 | eleq2w 2828 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) | |
6 | 5 | intminss 4998 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧) |
7 | sstr 4017 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
8 | 6, 7 | sylan 579 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧) ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
9 | 8 | expl 457 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → ((𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
10 | 9 | rexlimiv 3154 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 (𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ ((𝐴Fne𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦)) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝐴Fne𝐵 → ((𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦) → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
13 | 2, 12 | biimtrid 242 | . . 3 ⊢ (𝐴Fne𝐵 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦)) |
14 | 13 | ralrimiv 3151 | . 2 ⊢ (𝐴Fne𝐵 → ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) |
15 | ssint 4988 | . 2 ⊢ (∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ 𝑦) | |
16 | 14, 15 | sylibr 234 | 1 ⊢ (𝐴Fne𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥} ⊆ ∩ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∩ cint 4970 class class class wbr 5166 Fnecfne 36302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 df-fne 36303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |