Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version |
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
dynkin.1 | ⊢ (𝜑 → 𝑆 ∈ 𝐿) |
dynkin.2 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
dynkin.3 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
dynkin | ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | sseq2 3943 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡)) | |
5 | 4 | cbvrabv 3416 | . . . . . . 7 ⊢ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
6 | 5 | inteqi 4880 | . . . . . 6 ⊢ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
7 | dynkin.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
8 | 1, 2, 3, 6, 7 | ldgenpisys 32034 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝑃) |
9 | 1 | ispisys2 32021 | . . . . . . . . 9 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑇)) |
10 | 9 | simplbi 497 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
11 | 7, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
12 | 11 | elpwid 4541 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
13 | 2, 3, 12 | ldsysgenld 32028 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝐿) |
14 | 8, 13 | elind 4124 | . . . 4 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (𝑃 ∩ 𝐿)) |
15 | 1, 2 | sigapildsys 32030 | . . . 4 ⊢ (sigAlgebra‘𝑂) = (𝑃 ∩ 𝐿) |
16 | 14, 15 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂)) |
17 | ssintub 4894 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
19 | sseq2 3943 | . . . 4 ⊢ (𝑢 = ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} → (𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣})) | |
20 | 19 | intminss 4902 | . . 3 ⊢ ((∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
21 | 16, 18, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
22 | dynkin.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐿) | |
23 | dynkin.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
24 | sseq2 3943 | . . . 4 ⊢ (𝑣 = 𝑆 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆)) | |
25 | 24 | intminss 4902 | . . 3 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
26 | 22, 23, 25 | syl2anc 583 | . 2 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
27 | 21, 26 | sstrd 3927 | 1 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 ∩ cint 4876 Disj wdisj 5035 class class class wbr 5070 ‘cfv 6418 ωcom 7687 ≼ cdom 8689 Fincfn 8691 ficfi 9099 sigAlgebracsiga 31976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-siga 31977 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |