| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version | ||
| Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
| Ref | Expression |
|---|---|
| dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| dynkin.1 | ⊢ (𝜑 → 𝑆 ∈ 𝐿) |
| dynkin.2 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| dynkin.3 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dynkin | ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 2 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 3 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 4 | sseq2 3964 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡)) | |
| 5 | 4 | cbvrabv 3407 | . . . . . . 7 ⊢ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 6 | 5 | inteqi 4903 | . . . . . 6 ⊢ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 7 | dynkin.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 8 | 1, 2, 3, 6, 7 | ldgenpisys 34132 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝑃) |
| 9 | 1 | ispisys2 34119 | . . . . . . . . 9 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑇)) |
| 10 | 9 | simplbi 497 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 11 | 7, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 12 | 11 | elpwid 4562 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
| 13 | 2, 3, 12 | ldsysgenld 34126 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝐿) |
| 14 | 8, 13 | elind 4153 | . . . 4 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (𝑃 ∩ 𝐿)) |
| 15 | 1, 2 | sigapildsys 34128 | . . . 4 ⊢ (sigAlgebra‘𝑂) = (𝑃 ∩ 𝐿) |
| 16 | 14, 15 | eleqtrrdi 2839 | . . 3 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂)) |
| 17 | ssintub 4919 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 19 | sseq2 3964 | . . . 4 ⊢ (𝑢 = ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} → (𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣})) | |
| 20 | 19 | intminss 4927 | . . 3 ⊢ ((∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 21 | 16, 18, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 22 | dynkin.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐿) | |
| 23 | dynkin.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 24 | sseq2 3964 | . . . 4 ⊢ (𝑣 = 𝑆 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆)) | |
| 25 | 24 | intminss 4927 | . . 3 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
| 26 | 22, 23, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
| 27 | 21, 26 | sstrd 3948 | 1 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ∩ cint 4899 Disj wdisj 5062 class class class wbr 5095 ‘cfv 6486 ωcom 7806 ≼ cdom 8877 Fincfn 8879 ficfi 9319 sigAlgebracsiga 34074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-siga 34075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |