Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dynkin Structured version   Visualization version   GIF version

Theorem dynkin 34198
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
dynkin.1 (𝜑𝑆𝐿)
dynkin.2 (𝜑𝑇𝑃)
dynkin.3 (𝜑𝑇𝑆)
Assertion
Ref Expression
dynkin (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Distinct variable groups:   𝑥,𝑠,𝑦,𝐿   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦   𝐿,𝑠,𝑢,𝑥   𝑢,𝑂   𝑇,𝑠,𝑢,𝑥   𝜑,𝑥   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑢,𝑠)   𝑃(𝑢,𝑠)   𝑆(𝑥,𝑦,𝑢,𝑠)   𝑉(𝑦,𝑢,𝑠)

Proof of Theorem dynkin
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . . . . . 6 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . . . . . 6 (𝜑𝑂𝑉)
4 sseq2 3985 . . . . . . . 8 (𝑣 = 𝑡 → (𝑇𝑣𝑇𝑡))
54cbvrabv 3426 . . . . . . 7 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
65inteqi 4926 . . . . . 6 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
7 dynkin.2 . . . . . 6 (𝜑𝑇𝑃)
81, 2, 3, 6, 7ldgenpisys 34197 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝑃)
91ispisys2 34184 . . . . . . . . 9 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅}) 𝑥𝑇))
109simplbi 497 . . . . . . . 8 (𝑇𝑃𝑇 ∈ 𝒫 𝒫 𝑂)
117, 10syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
1211elpwid 4584 . . . . . 6 (𝜑𝑇 ⊆ 𝒫 𝑂)
132, 3, 12ldsysgenld 34191 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝐿)
148, 13elind 4175 . . . 4 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (𝑃𝐿))
151, 2sigapildsys 34193 . . . 4 (sigAlgebra‘𝑂) = (𝑃𝐿)
1614, 15eleqtrrdi 2845 . . 3 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂))
17 ssintub 4942 . . . 4 𝑇 {𝑣𝐿𝑇𝑣}
1817a1i 11 . . 3 (𝜑𝑇 {𝑣𝐿𝑇𝑣})
19 sseq2 3985 . . . 4 (𝑢 = {𝑣𝐿𝑇𝑣} → (𝑇𝑢𝑇 {𝑣𝐿𝑇𝑣}))
2019intminss 4950 . . 3 (( {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 {𝑣𝐿𝑇𝑣}) → {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
2116, 18, 20syl2anc 584 . 2 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
22 dynkin.1 . . 3 (𝜑𝑆𝐿)
23 dynkin.3 . . 3 (𝜑𝑇𝑆)
24 sseq2 3985 . . . 4 (𝑣 = 𝑆 → (𝑇𝑣𝑇𝑆))
2524intminss 4950 . . 3 ((𝑆𝐿𝑇𝑆) → {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2622, 23, 25syl2anc 584 . 2 (𝜑 {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2721, 26sstrd 3969 1 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   cint 4922  Disj wdisj 5086   class class class wbr 5119  cfv 6531  ωcom 7861  cdom 8957  Fincfn 8959  ficfi 9422  sigAlgebracsiga 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-siga 34140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator