![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version |
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
Ref | Expression |
---|---|
dynkin.p | β’ π = {π β π« π« π β£ (fiβπ ) β π } |
dynkin.l | β’ πΏ = {π β π« π« π β£ (β β π β§ βπ₯ β π (π β π₯) β π β§ βπ₯ β π« π ((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β βͺ π₯ β π ))} |
dynkin.o | β’ (π β π β π) |
dynkin.1 | β’ (π β π β πΏ) |
dynkin.2 | β’ (π β π β π) |
dynkin.3 | β’ (π β π β π) |
Ref | Expression |
---|---|
dynkin | β’ (π β β© {π’ β (sigAlgebraβπ) β£ π β π’} β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . . . . . 6 β’ π = {π β π« π« π β£ (fiβπ ) β π } | |
2 | dynkin.l | . . . . . 6 β’ πΏ = {π β π« π« π β£ (β β π β§ βπ₯ β π (π β π₯) β π β§ βπ₯ β π« π ((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β βͺ π₯ β π ))} | |
3 | dynkin.o | . . . . . 6 β’ (π β π β π) | |
4 | sseq2 4004 | . . . . . . . 8 β’ (π£ = π‘ β (π β π£ β π β π‘)) | |
5 | 4 | cbvrabv 3437 | . . . . . . 7 β’ {π£ β πΏ β£ π β π£} = {π‘ β πΏ β£ π β π‘} |
6 | 5 | inteqi 4948 | . . . . . 6 β’ β© {π£ β πΏ β£ π β π£} = β© {π‘ β πΏ β£ π β π‘} |
7 | dynkin.2 | . . . . . 6 β’ (π β π β π) | |
8 | 1, 2, 3, 6, 7 | ldgenpisys 33775 | . . . . 5 β’ (π β β© {π£ β πΏ β£ π β π£} β π) |
9 | 1 | ispisys2 33762 | . . . . . . . . 9 β’ (π β π β (π β π« π« π β§ βπ₯ β ((π« π β© Fin) β {β })β© π₯ β π)) |
10 | 9 | simplbi 497 | . . . . . . . 8 β’ (π β π β π β π« π« π) |
11 | 7, 10 | syl 17 | . . . . . . 7 β’ (π β π β π« π« π) |
12 | 11 | elpwid 4607 | . . . . . 6 β’ (π β π β π« π) |
13 | 2, 3, 12 | ldsysgenld 33769 | . . . . 5 β’ (π β β© {π£ β πΏ β£ π β π£} β πΏ) |
14 | 8, 13 | elind 4190 | . . . 4 β’ (π β β© {π£ β πΏ β£ π β π£} β (π β© πΏ)) |
15 | 1, 2 | sigapildsys 33771 | . . . 4 β’ (sigAlgebraβπ) = (π β© πΏ) |
16 | 14, 15 | eleqtrrdi 2839 | . . 3 β’ (π β β© {π£ β πΏ β£ π β π£} β (sigAlgebraβπ)) |
17 | ssintub 4964 | . . . 4 β’ π β β© {π£ β πΏ β£ π β π£} | |
18 | 17 | a1i 11 | . . 3 β’ (π β π β β© {π£ β πΏ β£ π β π£}) |
19 | sseq2 4004 | . . . 4 β’ (π’ = β© {π£ β πΏ β£ π β π£} β (π β π’ β π β β© {π£ β πΏ β£ π β π£})) | |
20 | 19 | intminss 4972 | . . 3 β’ ((β© {π£ β πΏ β£ π β π£} β (sigAlgebraβπ) β§ π β β© {π£ β πΏ β£ π β π£}) β β© {π’ β (sigAlgebraβπ) β£ π β π’} β β© {π£ β πΏ β£ π β π£}) |
21 | 16, 18, 20 | syl2anc 583 | . 2 β’ (π β β© {π’ β (sigAlgebraβπ) β£ π β π’} β β© {π£ β πΏ β£ π β π£}) |
22 | dynkin.1 | . . 3 β’ (π β π β πΏ) | |
23 | dynkin.3 | . . 3 β’ (π β π β π) | |
24 | sseq2 4004 | . . . 4 β’ (π£ = π β (π β π£ β π β π)) | |
25 | 24 | intminss 4972 | . . 3 β’ ((π β πΏ β§ π β π) β β© {π£ β πΏ β£ π β π£} β π) |
26 | 22, 23, 25 | syl2anc 583 | . 2 β’ (π β β© {π£ β πΏ β£ π β π£} β π) |
27 | 21, 26 | sstrd 3988 | 1 β’ (π β β© {π’ β (sigAlgebraβπ) β£ π β π’} β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3056 {crab 3427 β cdif 3941 β© cin 3943 β wss 3944 β c0 4318 π« cpw 4598 {csn 4624 βͺ cuni 4903 β© cint 4944 Disj wdisj 5107 class class class wbr 5142 βcfv 6542 Οcom 7864 βΌ cdom 8955 Fincfn 8957 ficfi 9427 sigAlgebracsiga 33717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-ac2 10480 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-dju 9918 df-card 9956 df-acn 9959 df-ac 10133 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-siga 33718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |