| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version | ||
| Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
| Ref | Expression |
|---|---|
| dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| dynkin.1 | ⊢ (𝜑 → 𝑆 ∈ 𝐿) |
| dynkin.2 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| dynkin.3 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dynkin | ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 2 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 3 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 4 | sseq2 3985 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡)) | |
| 5 | 4 | cbvrabv 3426 | . . . . . . 7 ⊢ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 6 | 5 | inteqi 4926 | . . . . . 6 ⊢ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 7 | dynkin.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 8 | 1, 2, 3, 6, 7 | ldgenpisys 34197 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝑃) |
| 9 | 1 | ispisys2 34184 | . . . . . . . . 9 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑇)) |
| 10 | 9 | simplbi 497 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 11 | 7, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 12 | 11 | elpwid 4584 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
| 13 | 2, 3, 12 | ldsysgenld 34191 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝐿) |
| 14 | 8, 13 | elind 4175 | . . . 4 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (𝑃 ∩ 𝐿)) |
| 15 | 1, 2 | sigapildsys 34193 | . . . 4 ⊢ (sigAlgebra‘𝑂) = (𝑃 ∩ 𝐿) |
| 16 | 14, 15 | eleqtrrdi 2845 | . . 3 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂)) |
| 17 | ssintub 4942 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 19 | sseq2 3985 | . . . 4 ⊢ (𝑢 = ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} → (𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣})) | |
| 20 | 19 | intminss 4950 | . . 3 ⊢ ((∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 21 | 16, 18, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
| 22 | dynkin.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐿) | |
| 23 | dynkin.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 24 | sseq2 3985 | . . . 4 ⊢ (𝑣 = 𝑆 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆)) | |
| 25 | 24 | intminss 4950 | . . 3 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
| 26 | 22, 23, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
| 27 | 21, 26 | sstrd 3969 | 1 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 ∪ cuni 4883 ∩ cint 4922 Disj wdisj 5086 class class class wbr 5119 ‘cfv 6531 ωcom 7861 ≼ cdom 8957 Fincfn 8959 ficfi 9422 sigAlgebracsiga 34139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-siga 34140 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |