Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dynkin Structured version   Visualization version   GIF version

Theorem dynkin 31602
 Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
dynkin.1 (𝜑𝑆𝐿)
dynkin.2 (𝜑𝑇𝑃)
dynkin.3 (𝜑𝑇𝑆)
Assertion
Ref Expression
dynkin (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Distinct variable groups:   𝑥,𝑠,𝑦,𝐿   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦   𝐿,𝑠,𝑢,𝑥   𝑢,𝑂   𝑇,𝑠,𝑢,𝑥   𝜑,𝑥   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑢,𝑠)   𝑃(𝑢,𝑠)   𝑆(𝑥,𝑦,𝑢,𝑠)   𝑉(𝑦,𝑢,𝑠)

Proof of Theorem dynkin
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . . . . . 6 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . . . . . 6 (𝜑𝑂𝑉)
4 sseq2 3943 . . . . . . . 8 (𝑣 = 𝑡 → (𝑇𝑣𝑇𝑡))
54cbvrabv 3440 . . . . . . 7 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
65inteqi 4846 . . . . . 6 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
7 dynkin.2 . . . . . 6 (𝜑𝑇𝑃)
81, 2, 3, 6, 7ldgenpisys 31601 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝑃)
91ispisys2 31588 . . . . . . . . 9 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅}) 𝑥𝑇))
109simplbi 501 . . . . . . . 8 (𝑇𝑃𝑇 ∈ 𝒫 𝒫 𝑂)
117, 10syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
1211elpwid 4511 . . . . . 6 (𝜑𝑇 ⊆ 𝒫 𝑂)
132, 3, 12ldsysgenld 31595 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝐿)
148, 13elind 4124 . . . 4 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (𝑃𝐿))
151, 2sigapildsys 31597 . . . 4 (sigAlgebra‘𝑂) = (𝑃𝐿)
1614, 15eleqtrrdi 2901 . . 3 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂))
17 ssintub 4860 . . . 4 𝑇 {𝑣𝐿𝑇𝑣}
1817a1i 11 . . 3 (𝜑𝑇 {𝑣𝐿𝑇𝑣})
19 sseq2 3943 . . . 4 (𝑢 = {𝑣𝐿𝑇𝑣} → (𝑇𝑢𝑇 {𝑣𝐿𝑇𝑣}))
2019intminss 4868 . . 3 (( {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 {𝑣𝐿𝑇𝑣}) → {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
2116, 18, 20syl2anc 587 . 2 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
22 dynkin.1 . . 3 (𝜑𝑆𝐿)
23 dynkin.3 . . 3 (𝜑𝑇𝑆)
24 sseq2 3943 . . . 4 (𝑣 = 𝑆 → (𝑇𝑣𝑇𝑆))
2524intminss 4868 . . 3 ((𝑆𝐿𝑇𝑆) → {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2622, 23, 25syl2anc 587 . 2 (𝜑 {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2721, 26sstrd 3927 1 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110   ∖ cdif 3880   ∩ cin 3882   ⊆ wss 3883  ∅c0 4246  𝒫 cpw 4500  {csn 4528  ∪ cuni 4804  ∩ cint 4842  Disj wdisj 4999   class class class wbr 5034  ‘cfv 6332  ωcom 7573   ≼ cdom 8508  Fincfn 8510  ficfi 8876  sigAlgebracsiga 31543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-ac2 9892  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-disj 5000  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9545  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-siga 31544 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator