Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dynkin Structured version   Visualization version   GIF version

Theorem dynkin 31430
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
dynkin.1 (𝜑𝑆𝐿)
dynkin.2 (𝜑𝑇𝑃)
dynkin.3 (𝜑𝑇𝑆)
Assertion
Ref Expression
dynkin (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Distinct variable groups:   𝑥,𝑠,𝑦,𝐿   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦   𝐿,𝑠,𝑢,𝑥   𝑢,𝑂   𝑇,𝑠,𝑢,𝑥   𝜑,𝑥   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑢,𝑠)   𝑃(𝑢,𝑠)   𝑆(𝑥,𝑦,𝑢,𝑠)   𝑉(𝑦,𝑢,𝑠)

Proof of Theorem dynkin
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . . . . . 6 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . . . . . 6 (𝜑𝑂𝑉)
4 sseq2 3996 . . . . . . . 8 (𝑣 = 𝑡 → (𝑇𝑣𝑇𝑡))
54cbvrabv 3494 . . . . . . 7 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
65inteqi 4883 . . . . . 6 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
7 dynkin.2 . . . . . 6 (𝜑𝑇𝑃)
81, 2, 3, 6, 7ldgenpisys 31429 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝑃)
91ispisys2 31416 . . . . . . . . 9 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅}) 𝑥𝑇))
109simplbi 500 . . . . . . . 8 (𝑇𝑃𝑇 ∈ 𝒫 𝒫 𝑂)
117, 10syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
1211elpwid 4553 . . . . . 6 (𝜑𝑇 ⊆ 𝒫 𝑂)
132, 3, 12ldsysgenld 31423 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝐿)
148, 13elind 4174 . . . 4 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (𝑃𝐿))
151, 2sigapildsys 31425 . . . 4 (sigAlgebra‘𝑂) = (𝑃𝐿)
1614, 15eleqtrrdi 2927 . . 3 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂))
17 ssintub 4897 . . . 4 𝑇 {𝑣𝐿𝑇𝑣}
1817a1i 11 . . 3 (𝜑𝑇 {𝑣𝐿𝑇𝑣})
19 sseq2 3996 . . . 4 (𝑢 = {𝑣𝐿𝑇𝑣} → (𝑇𝑢𝑇 {𝑣𝐿𝑇𝑣}))
2019intminss 4905 . . 3 (( {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 {𝑣𝐿𝑇𝑣}) → {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
2116, 18, 20syl2anc 586 . 2 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
22 dynkin.1 . . 3 (𝜑𝑆𝐿)
23 dynkin.3 . . 3 (𝜑𝑇𝑆)
24 sseq2 3996 . . . 4 (𝑣 = 𝑆 → (𝑇𝑣𝑇𝑆))
2524intminss 4905 . . 3 ((𝑆𝐿𝑇𝑆) → {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2622, 23, 25syl2anc 586 . 2 (𝜑 {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2721, 26sstrd 3980 1 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  {crab 3145  cdif 3936  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570   cuni 4841   cint 4879  Disj wdisj 5034   class class class wbr 5069  cfv 6358  ωcom 7583  cdom 8510  Fincfn 8512  ficfi 8877  sigAlgebracsiga 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-siga 31372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator