![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version |
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
dynkin.1 | ⊢ (𝜑 → 𝑆 ∈ 𝐿) |
dynkin.2 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
dynkin.3 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
dynkin | ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | sseq2 4022 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡)) | |
5 | 4 | cbvrabv 3444 | . . . . . . 7 ⊢ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
6 | 5 | inteqi 4955 | . . . . . 6 ⊢ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
7 | dynkin.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
8 | 1, 2, 3, 6, 7 | ldgenpisys 34147 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝑃) |
9 | 1 | ispisys2 34134 | . . . . . . . . 9 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑇)) |
10 | 9 | simplbi 497 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
11 | 7, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
12 | 11 | elpwid 4614 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
13 | 2, 3, 12 | ldsysgenld 34141 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝐿) |
14 | 8, 13 | elind 4210 | . . . 4 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (𝑃 ∩ 𝐿)) |
15 | 1, 2 | sigapildsys 34143 | . . . 4 ⊢ (sigAlgebra‘𝑂) = (𝑃 ∩ 𝐿) |
16 | 14, 15 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂)) |
17 | ssintub 4971 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
19 | sseq2 4022 | . . . 4 ⊢ (𝑢 = ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} → (𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣})) | |
20 | 19 | intminss 4979 | . . 3 ⊢ ((∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
21 | 16, 18, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
22 | dynkin.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐿) | |
23 | dynkin.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
24 | sseq2 4022 | . . . 4 ⊢ (𝑣 = 𝑆 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆)) | |
25 | 24 | intminss 4979 | . . 3 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
26 | 22, 23, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
27 | 21, 26 | sstrd 4006 | 1 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 ∩ cint 4951 Disj wdisj 5115 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≼ cdom 8982 Fincfn 8984 ficfi 9448 sigAlgebracsiga 34089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-siga 34090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |