![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardonle | Structured version Visualization version GIF version |
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
cardonle | β’ (π΄ β On β (cardβπ΄) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oncardval 9952 | . 2 β’ (π΄ β On β (cardβπ΄) = β© {π₯ β On β£ π₯ β π΄}) | |
2 | enrefg 8982 | . . 3 β’ (π΄ β On β π΄ β π΄) | |
3 | breq1 5144 | . . . 4 β’ (π₯ = π΄ β (π₯ β π΄ β π΄ β π΄)) | |
4 | 3 | intminss 4971 | . . 3 β’ ((π΄ β On β§ π΄ β π΄) β β© {π₯ β On β£ π₯ β π΄} β π΄) |
5 | 2, 4 | mpdan 684 | . 2 β’ (π΄ β On β β© {π₯ β On β£ π₯ β π΄} β π΄) |
6 | 1, 5 | eqsstrd 4015 | 1 β’ (π΄ β On β (cardβπ΄) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 {crab 3426 β wss 3943 β© cint 4943 class class class wbr 5141 Oncon0 6358 βcfv 6537 β cen 8938 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-en 8942 df-card 9936 |
This theorem is referenced by: card0 9955 iscard 9972 iscard2 9973 carduni 9978 cardom 9983 alephinit 10092 cfle 10251 cfflb 10256 pwfseqlem5 10660 harval3 42862 |
Copyright terms: Public domain | W3C validator |