MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardonle Structured version   Visualization version   GIF version

Theorem cardonle 9910
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)

Proof of Theorem cardonle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oncardval 9908 . 2 (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
2 enrefg 8955 . . 3 (𝐴 ∈ On → 𝐴𝐴)
3 breq1 5110 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
43intminss 4938 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐴) → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
52, 4mpdan 687 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
61, 5eqsstrd 3981 1 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3405  wss 3914   cint 4910   class class class wbr 5107  Oncon0 6332  cfv 6511  cen 8915  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-en 8919  df-card 9892
This theorem is referenced by:  card0  9911  iscard  9928  iscard2  9929  carduni  9934  cardom  9939  alephinit  10048  cfle  10207  cfflb  10212  pwfseqlem5  10616  harval3  43527
  Copyright terms: Public domain W3C validator