MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardonle Structured version   Visualization version   GIF version

Theorem cardonle 9952
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle (𝐴 ∈ On β†’ (cardβ€˜π΄) βŠ† 𝐴)

Proof of Theorem cardonle
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oncardval 9950 . 2 (𝐴 ∈ On β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
2 enrefg 8980 . . 3 (𝐴 ∈ On β†’ 𝐴 β‰ˆ 𝐴)
3 breq1 5152 . . . 4 (π‘₯ = 𝐴 β†’ (π‘₯ β‰ˆ 𝐴 ↔ 𝐴 β‰ˆ 𝐴))
43intminss 4979 . . 3 ((𝐴 ∈ On ∧ 𝐴 β‰ˆ 𝐴) β†’ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} βŠ† 𝐴)
52, 4mpdan 686 . 2 (𝐴 ∈ On β†’ ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴} βŠ† 𝐴)
61, 5eqsstrd 4021 1 (𝐴 ∈ On β†’ (cardβ€˜π΄) βŠ† 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  {crab 3433   βŠ† wss 3949  βˆ© cint 4951   class class class wbr 5149  Oncon0 6365  β€˜cfv 6544   β‰ˆ cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-en 8940  df-card 9934
This theorem is referenced by:  card0  9953  iscard  9970  iscard2  9971  carduni  9976  cardom  9981  alephinit  10090  cfle  10249  cfflb  10254  pwfseqlem5  10658  harval3  42289
  Copyright terms: Public domain W3C validator