| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss | Structured version Visualization version GIF version | ||
| Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here 𝐴. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| sigagenss | ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝑆) → (sigaGen‘𝐴) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ 𝑆 ∧ 𝑆 ∈ (sigAlgebra‘∪ 𝐴)) → 𝐴 ∈ V) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝑆) → 𝐴 ∈ V) |
| 3 | sigagenval 34153 | . . 3 ⊢ (𝐴 ∈ V → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝑆) → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| 5 | sseq2 3956 | . . 3 ⊢ (𝑠 = 𝑆 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑆)) | |
| 6 | 5 | intminss 4922 | . 2 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝑆) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ 𝑆) |
| 7 | 4, 6 | eqsstrd 3964 | 1 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝑆) → (sigaGen‘𝐴) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4856 ∩ cint 4895 ‘cfv 6481 sigAlgebracsiga 34121 sigaGencsigagen 34151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-siga 34122 df-sigagen 34152 |
| This theorem is referenced by: sigagenss2 34163 sigagenid 34164 imambfm 34275 |
| Copyright terms: Public domain | W3C validator |