Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss Structured version   Visualization version   GIF version

Theorem sigagenss 32017
Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here 𝐴. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenss ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)

Proof of Theorem sigagenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5242 . . . 4 ((𝐴𝑆𝑆 ∈ (sigAlgebra‘ 𝐴)) → 𝐴 ∈ V)
21ancoms 458 . . 3 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → 𝐴 ∈ V)
3 sigagenval 32008 . . 3 (𝐴 ∈ V → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
42, 3syl 17 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
5 sseq2 3943 . . 3 (𝑠 = 𝑆 → (𝐴𝑠𝐴𝑆))
65intminss 4902 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ 𝑆)
74, 6eqsstrd 3955 1 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883   cuni 4836   cint 4876  cfv 6418  sigAlgebracsiga 31976  sigaGencsigagen 32006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-siga 31977  df-sigagen 32007
This theorem is referenced by:  sigagenss2  32018  sigagenid  32019  imambfm  32129
  Copyright terms: Public domain W3C validator