Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss Structured version   Visualization version   GIF version

Theorem sigagenss 33460
Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here 𝐴. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenss ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)

Proof of Theorem sigagenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5323 . . . 4 ((𝐴𝑆𝑆 ∈ (sigAlgebra‘ 𝐴)) → 𝐴 ∈ V)
21ancoms 458 . . 3 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → 𝐴 ∈ V)
3 sigagenval 33451 . . 3 (𝐴 ∈ V → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
42, 3syl 17 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
5 sseq2 4008 . . 3 (𝑠 = 𝑆 → (𝐴𝑠𝐴𝑆))
65intminss 4978 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ 𝑆)
74, 6eqsstrd 4020 1 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  wss 3948   cuni 4908   cint 4950  cfv 6543  sigAlgebracsiga 33419  sigaGencsigagen 33449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-siga 33420  df-sigagen 33450
This theorem is referenced by:  sigagenss2  33461  sigagenid  33462  imambfm  33574
  Copyright terms: Public domain W3C validator