Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss Structured version   Visualization version   GIF version

Theorem sigagenss 33142
Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here 𝐴. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenss ((𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝑆) β†’ (sigaGenβ€˜π΄) βŠ† 𝑆)

Proof of Theorem sigagenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5323 . . . 4 ((𝐴 βŠ† 𝑆 ∧ 𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴)) β†’ 𝐴 ∈ V)
21ancoms 459 . . 3 ((𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝑆) β†’ 𝐴 ∈ V)
3 sigagenval 33133 . . 3 (𝐴 ∈ V β†’ (sigaGenβ€˜π΄) = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
42, 3syl 17 . 2 ((𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝑆) β†’ (sigaGenβ€˜π΄) = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
5 sseq2 4008 . . 3 (𝑠 = 𝑆 β†’ (𝐴 βŠ† 𝑠 ↔ 𝐴 βŠ† 𝑆))
65intminss 4978 . 2 ((𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝑆) β†’ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} βŠ† 𝑆)
74, 6eqsstrd 4020 1 ((𝑆 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝑆) β†’ (sigaGenβ€˜π΄) βŠ† 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3948  βˆͺ cuni 4908  βˆ© cint 4950  β€˜cfv 6543  sigAlgebracsiga 33101  sigaGencsigagen 33131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-siga 33102  df-sigagen 33132
This theorem is referenced by:  sigagenss2  33143  sigagenid  33144  imambfm  33256
  Copyright terms: Public domain W3C validator