![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss | Structured version Visualization version GIF version |
Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here π΄. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
sigagenss | β’ ((π β (sigAlgebraββͺ π΄) β§ π΄ β π) β (sigaGenβπ΄) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5323 | . . . 4 β’ ((π΄ β π β§ π β (sigAlgebraββͺ π΄)) β π΄ β V) | |
2 | 1 | ancoms 459 | . . 3 β’ ((π β (sigAlgebraββͺ π΄) β§ π΄ β π) β π΄ β V) |
3 | sigagenval 33133 | . . 3 β’ (π΄ β V β (sigaGenβπ΄) = β© {π β (sigAlgebraββͺ π΄) β£ π΄ β π }) | |
4 | 2, 3 | syl 17 | . 2 β’ ((π β (sigAlgebraββͺ π΄) β§ π΄ β π) β (sigaGenβπ΄) = β© {π β (sigAlgebraββͺ π΄) β£ π΄ β π }) |
5 | sseq2 4008 | . . 3 β’ (π = π β (π΄ β π β π΄ β π)) | |
6 | 5 | intminss 4978 | . 2 β’ ((π β (sigAlgebraββͺ π΄) β§ π΄ β π) β β© {π β (sigAlgebraββͺ π΄) β£ π΄ β π } β π) |
7 | 4, 6 | eqsstrd 4020 | 1 β’ ((π β (sigAlgebraββͺ π΄) β§ π΄ β π) β (sigaGenβπ΄) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3948 βͺ cuni 4908 β© cint 4950 βcfv 6543 sigAlgebracsiga 33101 sigaGencsigagen 33131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-siga 33102 df-sigagen 33132 |
This theorem is referenced by: sigagenss2 33143 sigagenid 33144 imambfm 33256 |
Copyright terms: Public domain | W3C validator |