| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intxp | Structured version Visualization version GIF version | ||
| Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5797 and iinxp 48809. (Contributed by Zhi Wang, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| intxp.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| intxp.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥)) |
| intxp.3 | ⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 |
| intxp.4 | ⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 |
| Ref | Expression |
|---|---|
| intxp | ⊢ (𝜑 → ∩ 𝐴 = (𝑋 × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5025 | . . . 4 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | intxp.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥)) | |
| 3 | 2 | iineq2dv 4983 | . . . 4 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝑥 = ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥)) |
| 4 | 1, 3 | eqtrid 2777 | . . 3 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥)) |
| 5 | intxp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | iinxp 48809 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) |
| 8 | 4, 7 | eqtrd 2765 | . 2 ⊢ (𝜑 → ∩ 𝐴 = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) |
| 9 | intxp.3 | . . 3 ⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 | |
| 10 | intxp.4 | . . 3 ⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 | |
| 11 | 9, 10 | xpeq12i 5668 | . 2 ⊢ (𝑋 × 𝑌) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥) |
| 12 | 8, 11 | eqtr4di 2783 | 1 ⊢ (𝜑 → ∩ 𝐴 = (𝑋 × 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 ∩ cint 4912 ∩ ciin 4958 × cxp 5638 dom cdm 5640 ran crn 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-int 4913 df-iin 4960 df-opab 5172 df-xp 5646 df-rel 5647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |