Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intxp Structured version   Visualization version   GIF version

Theorem intxp 48871
Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5770 and iinxp 48870. (Contributed by Zhi Wang, 30-Oct-2025.)
Hypotheses
Ref Expression
intxp.1 (𝜑𝐴 ≠ ∅)
intxp.2 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
intxp.3 𝑋 = 𝑥𝐴 dom 𝑥
intxp.4 𝑌 = 𝑥𝐴 ran 𝑥
Assertion
Ref Expression
intxp (𝜑 𝐴 = (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem intxp
StepHypRef Expression
1 intiin 5006 . . . 4 𝐴 = 𝑥𝐴 𝑥
2 intxp.2 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
32iineq2dv 4965 . . . 4 (𝜑 𝑥𝐴 𝑥 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
41, 3eqtrid 2778 . . 3 (𝜑 𝐴 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
5 intxp.1 . . . 4 (𝜑𝐴 ≠ ∅)
6 iinxp 48870 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
75, 6syl 17 . . 3 (𝜑 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
84, 7eqtrd 2766 . 2 (𝜑 𝐴 = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
9 intxp.3 . . 3 𝑋 = 𝑥𝐴 dom 𝑥
10 intxp.4 . . 3 𝑌 = 𝑥𝐴 ran 𝑥
119, 10xpeq12i 5642 . 2 (𝑋 × 𝑌) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥)
128, 11eqtr4di 2784 1 (𝜑 𝐴 = (𝑋 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  c0 4280   cint 4895   ciin 4940   × cxp 5612  dom cdm 5614  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-int 4896  df-iin 4942  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator