| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intxp | Structured version Visualization version GIF version | ||
| Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5822 and iinxp 48718. (Contributed by Zhi Wang, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| intxp.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| intxp.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥)) |
| intxp.3 | ⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 |
| intxp.4 | ⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 |
| Ref | Expression |
|---|---|
| intxp | ⊢ (𝜑 → ∩ 𝐴 = (𝑋 × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intiin 5039 | . . . 4 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | intxp.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥)) | |
| 3 | 2 | iineq2dv 4997 | . . . 4 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝑥 = ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥)) |
| 4 | 1, 3 | eqtrid 2781 | . . 3 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥)) |
| 5 | intxp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | iinxp 48718 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (dom 𝑥 × ran 𝑥) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) |
| 8 | 4, 7 | eqtrd 2769 | . 2 ⊢ (𝜑 → ∩ 𝐴 = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥)) |
| 9 | intxp.3 | . . 3 ⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 | |
| 10 | intxp.4 | . . 3 ⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 | |
| 11 | 9, 10 | xpeq12i 5693 | . 2 ⊢ (𝑋 × 𝑌) = (∩ 𝑥 ∈ 𝐴 dom 𝑥 × ∩ 𝑥 ∈ 𝐴 ran 𝑥) |
| 12 | 8, 11 | eqtr4di 2787 | 1 ⊢ (𝜑 → ∩ 𝐴 = (𝑋 × 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 ∩ cint 4926 ∩ ciin 4972 × cxp 5663 dom cdm 5665 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-int 4927 df-iin 4974 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |