Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intxp Structured version   Visualization version   GIF version

Theorem intxp 48810
Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5797 and iinxp 48809. (Contributed by Zhi Wang, 30-Oct-2025.)
Hypotheses
Ref Expression
intxp.1 (𝜑𝐴 ≠ ∅)
intxp.2 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
intxp.3 𝑋 = 𝑥𝐴 dom 𝑥
intxp.4 𝑌 = 𝑥𝐴 ran 𝑥
Assertion
Ref Expression
intxp (𝜑 𝐴 = (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem intxp
StepHypRef Expression
1 intiin 5025 . . . 4 𝐴 = 𝑥𝐴 𝑥
2 intxp.2 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
32iineq2dv 4983 . . . 4 (𝜑 𝑥𝐴 𝑥 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
41, 3eqtrid 2777 . . 3 (𝜑 𝐴 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
5 intxp.1 . . . 4 (𝜑𝐴 ≠ ∅)
6 iinxp 48809 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
75, 6syl 17 . . 3 (𝜑 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
84, 7eqtrd 2765 . 2 (𝜑 𝐴 = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
9 intxp.3 . . 3 𝑋 = 𝑥𝐴 dom 𝑥
10 intxp.4 . . 3 𝑌 = 𝑥𝐴 ran 𝑥
119, 10xpeq12i 5668 . 2 (𝑋 × 𝑌) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥)
128, 11eqtr4di 2783 1 (𝜑 𝐴 = (𝑋 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4298   cint 4912   ciin 4958   × cxp 5638  dom cdm 5640  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-int 4913  df-iin 4960  df-opab 5172  df-xp 5646  df-rel 5647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator