Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intxp Structured version   Visualization version   GIF version

Theorem intxp 48719
Description: Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5822 and iinxp 48718. (Contributed by Zhi Wang, 30-Oct-2025.)
Hypotheses
Ref Expression
intxp.1 (𝜑𝐴 ≠ ∅)
intxp.2 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
intxp.3 𝑋 = 𝑥𝐴 dom 𝑥
intxp.4 𝑌 = 𝑥𝐴 ran 𝑥
Assertion
Ref Expression
intxp (𝜑 𝐴 = (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem intxp
StepHypRef Expression
1 intiin 5039 . . . 4 𝐴 = 𝑥𝐴 𝑥
2 intxp.2 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥))
32iineq2dv 4997 . . . 4 (𝜑 𝑥𝐴 𝑥 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
41, 3eqtrid 2781 . . 3 (𝜑 𝐴 = 𝑥𝐴 (dom 𝑥 × ran 𝑥))
5 intxp.1 . . . 4 (𝜑𝐴 ≠ ∅)
6 iinxp 48718 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
75, 6syl 17 . . 3 (𝜑 𝑥𝐴 (dom 𝑥 × ran 𝑥) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
84, 7eqtrd 2769 . 2 (𝜑 𝐴 = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥))
9 intxp.3 . . 3 𝑋 = 𝑥𝐴 dom 𝑥
10 intxp.4 . . 3 𝑌 = 𝑥𝐴 ran 𝑥
119, 10xpeq12i 5693 . 2 (𝑋 × 𝑌) = ( 𝑥𝐴 dom 𝑥 × 𝑥𝐴 ran 𝑥)
128, 11eqtr4di 2787 1 (𝜑 𝐴 = (𝑋 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  c0 4313   cint 4926   ciin 4972   × cxp 5663  dom cdm 5665  ran crn 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-int 4927  df-iin 4974  df-opab 5186  df-xp 5671  df-rel 5672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator