| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
| xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | xpeq12 5666 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: imainrect 6157 cnvrescnv 6171 cnvssrndm 6247 fpar 8098 ttrclexg 9683 canthwelem 10610 trclublem 14968 pjpm 21624 txbasval 23500 hausdiag 23539 ussval 24154 ex-xp 30372 hh0oi 31839 fcnvgreu 32604 sitgclg 34340 sitmcl 34349 ismgmOLD 37851 isdrngo1 37957 trrelsuperrel2dg 43667 intxp 48824 isofval2 49025 oppc1stf 49281 oppc2ndf 49282 |
| Copyright terms: Public domain | W3C validator |