Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xpeq12 5614 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-opab 5142 df-xp 5595 |
This theorem is referenced by: imainrect 6082 cnvrescnv 6096 cnvssrndm 6172 fpar 7945 ttrclexg 9457 canthwelem 10405 trclublem 14702 pjpm 20911 txbasval 22753 hausdiag 22792 ussval 23407 ex-xp 28794 hh0oi 30259 fcnvgreu 31004 sitgclg 32303 sitmcl 32312 ismgmOLD 36002 isdrngo1 36108 trrelsuperrel2dg 41247 |
Copyright terms: Public domain | W3C validator |