![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xpeq12 5714 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-xp 5695 |
This theorem is referenced by: imainrect 6203 cnvrescnv 6217 cnvssrndm 6293 fpar 8140 ttrclexg 9761 canthwelem 10688 trclublem 15031 pjpm 21746 txbasval 23630 hausdiag 23669 ussval 24284 ex-xp 30465 hh0oi 31932 fcnvgreu 32690 sitgclg 34324 sitmcl 34333 ismgmOLD 37837 isdrngo1 37943 trrelsuperrel2dg 43661 |
Copyright terms: Public domain | W3C validator |