| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
| xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | xpeq12 5639 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: imainrect 6128 cnvrescnv 6142 cnvssrndm 6218 fpar 8046 ttrclexg 9613 canthwelem 10541 trclublem 14902 pjpm 21645 txbasval 23521 hausdiag 23560 ussval 24174 ex-xp 30416 hh0oi 31883 fcnvgreu 32655 sitgclg 34355 sitmcl 34364 ismgmOLD 37898 isdrngo1 38004 trrelsuperrel2dg 43712 intxp 48871 isofval2 49072 oppc1stf 49328 oppc2ndf 49329 |
| Copyright terms: Public domain | W3C validator |