Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12i.1 | ⊢ 𝐴 = 𝐵 |
xpeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xpeq12i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xpeq12 5605 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: imainrect 6073 cnvrescnv 6087 cnvssrndm 6163 fpar 7927 canthwelem 10337 trclublem 14634 pjpm 20825 txbasval 22665 hausdiag 22704 ussval 23319 ex-xp 28701 hh0oi 30166 fcnvgreu 30912 sitgclg 32209 sitmcl 32218 ttrclexg 33709 ismgmOLD 35935 isdrngo1 36041 trrelsuperrel2dg 41168 |
Copyright terms: Public domain | W3C validator |