MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq12i Structured version   Visualization version   GIF version

Theorem xpeq12i 5669
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 5666 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 692 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-opab 5173  df-xp 5647
This theorem is referenced by:  imainrect  6157  cnvrescnv  6171  cnvssrndm  6247  fpar  8098  ttrclexg  9683  canthwelem  10610  trclublem  14968  pjpm  21624  txbasval  23500  hausdiag  23539  ussval  24154  ex-xp  30372  hh0oi  31839  fcnvgreu  32604  sitgclg  34340  sitmcl  34349  ismgmOLD  37851  isdrngo1  37957  trrelsuperrel2dg  43667  intxp  48824  isofval2  49025  oppc1stf  49281  oppc2ndf  49282
  Copyright terms: Public domain W3C validator