Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq12i Structured version   Visualization version   GIF version

Theorem xpeq12i 5370
 Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 5367 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 683 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1656   × cxp 5340 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-opab 4936  df-xp 5348 This theorem is referenced by:  imainrect  5816  cnvssrndm  5898  idssxpOLD  6242  fpar  7545  canthwelem  9787  trclublem  14113  pjpm  20415  txbasval  21780  hausdiag  21819  ussval  22433  ex-xp  27840  hh0oi  29306  fcnvgreu  30009  sitgclg  30938  sitmcl  30947  ismgmOLD  34184  isdrngo1  34290  rtrclex  38758  rtrclexi  38762  trrelsuperrel2dg  38797
 Copyright terms: Public domain W3C validator