MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq12i Structured version   Visualization version   GIF version

Theorem xpeq12i 5682
Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xpeq12i (𝐴 × 𝐶) = (𝐵 × 𝐷)

Proof of Theorem xpeq12i
StepHypRef Expression
1 xpeq12i.1 . 2 𝐴 = 𝐵
2 xpeq12i.2 . 2 𝐶 = 𝐷
3 xpeq12 5679 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3mp2an 692 1 (𝐴 × 𝐶) = (𝐵 × 𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-opab 5182  df-xp 5660
This theorem is referenced by:  imainrect  6170  cnvrescnv  6184  cnvssrndm  6260  fpar  8115  ttrclexg  9737  canthwelem  10664  trclublem  15014  pjpm  21668  txbasval  23544  hausdiag  23583  ussval  24198  ex-xp  30417  hh0oi  31884  fcnvgreu  32651  sitgclg  34374  sitmcl  34383  ismgmOLD  37874  isdrngo1  37980  trrelsuperrel2dg  43695  intxp  48810  isofval2  49002
  Copyright terms: Public domain W3C validator