| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coxp | Structured version Visualization version GIF version | ||
| Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| coxp | ⊢ (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6093 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 × 𝐶)) | |
| 2 | relxp 5670 | . 2 ⊢ Rel (𝐵 × (𝐴 “ 𝐶)) | |
| 3 | brxp 5701 | . . . . . 6 ⊢ (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) | |
| 4 | 3 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
| 5 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ ((𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 7 | 6 | exbii 1847 | . . 3 ⊢ (∃𝑧(𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 8 | vex 3461 | . . . 4 ⊢ 𝑥 ∈ V | |
| 9 | vex 3461 | . . . 4 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | opelco 5849 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 11 | 9 | elima2 6051 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦)) |
| 12 | 11 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐴 “ 𝐶)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 13 | opelxp 5688 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐴 “ 𝐶))) | |
| 14 | 19.42v 1952 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶)) ↔ ∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 16 | 7, 10, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶))) |
| 17 | 1, 2, 16 | eqrelriiv 5767 | 1 ⊢ (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 〈cop 4605 class class class wbr 5117 × cxp 5650 “ cima 5655 ∘ ccom 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 |
| This theorem is referenced by: cosn 48706 |
| Copyright terms: Public domain | W3C validator |