Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coxp Structured version   Visualization version   GIF version

Theorem coxp 48827
Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
coxp (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))

Proof of Theorem coxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6059 . 2 Rel (𝐴 ∘ (𝐵 × 𝐶))
2 relxp 5637 . 2 Rel (𝐵 × (𝐴𝐶))
3 brxp 5668 . . . . . 6 (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥𝐵𝑧𝐶))
43anbi1i 624 . . . . 5 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦))
5 anass 468 . . . . 5 (((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
64, 5bitri 275 . . . 4 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
76exbii 1848 . . 3 (∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
8 vex 3440 . . . 4 𝑥 ∈ V
9 vex 3440 . . . 4 𝑦 ∈ V
108, 9opelco 5814 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦))
119elima2 6017 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶𝑧𝐴𝑦))
1211anbi2i 623 . . . 4 ((𝑥𝐵𝑦 ∈ (𝐴𝐶)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
13 opelxp 5655 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ (𝑥𝐵𝑦 ∈ (𝐴𝐶)))
14 19.42v 1953 . . . 4 (∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
1512, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
167, 10, 153bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)))
171, 2, 16eqrelriiv 5733 1 (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4583   class class class wbr 5092   × cxp 5617  cima 5622  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  cosn  48828
  Copyright terms: Public domain W3C validator