Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coxp Structured version   Visualization version   GIF version

Theorem coxp 48705
Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
coxp (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))

Proof of Theorem coxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6093 . 2 Rel (𝐴 ∘ (𝐵 × 𝐶))
2 relxp 5670 . 2 Rel (𝐵 × (𝐴𝐶))
3 brxp 5701 . . . . . 6 (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥𝐵𝑧𝐶))
43anbi1i 624 . . . . 5 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦))
5 anass 468 . . . . 5 (((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
64, 5bitri 275 . . . 4 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
76exbii 1847 . . 3 (∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
8 vex 3461 . . . 4 𝑥 ∈ V
9 vex 3461 . . . 4 𝑦 ∈ V
108, 9opelco 5849 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦))
119elima2 6051 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶𝑧𝐴𝑦))
1211anbi2i 623 . . . 4 ((𝑥𝐵𝑦 ∈ (𝐴𝐶)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
13 opelxp 5688 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ (𝑥𝐵𝑦 ∈ (𝐴𝐶)))
14 19.42v 1952 . . . 4 (∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
1512, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
167, 10, 153bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)))
171, 2, 16eqrelriiv 5767 1 (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1778  wcel 2107  cop 4605   class class class wbr 5117   × cxp 5650  cima 5655  ccom 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665
This theorem is referenced by:  cosn  48706
  Copyright terms: Public domain W3C validator