| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coxp | Structured version Visualization version GIF version | ||
| Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| coxp | ⊢ (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6056 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 × 𝐶)) | |
| 2 | relxp 5632 | . 2 ⊢ Rel (𝐵 × (𝐴 “ 𝐶)) | |
| 3 | brxp 5663 | . . . . . 6 ⊢ (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) | |
| 4 | 3 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝑧𝐴𝑦)) |
| 5 | anass 468 | . . . . 5 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ ((𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 7 | 6 | exbii 1849 | . . 3 ⊢ (∃𝑧(𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 8 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 9 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | opelco 5810 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 11 | 9 | elima2 6014 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦)) |
| 12 | 11 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐴 “ 𝐶)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 13 | opelxp 5650 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ (𝐴 “ 𝐶))) | |
| 14 | 19.42v 1954 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶)) ↔ ∃𝑧(𝑥 ∈ 𝐵 ∧ (𝑧 ∈ 𝐶 ∧ 𝑧𝐴𝑦))) |
| 16 | 7, 10, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 × (𝐴 “ 𝐶))) |
| 17 | 1, 2, 16 | eqrelriiv 5729 | 1 ⊢ (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 × cxp 5612 “ cima 5617 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: cosn 48944 |
| Copyright terms: Public domain | W3C validator |