Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coxp Structured version   Visualization version   GIF version

Theorem coxp 48717
Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
coxp (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))

Proof of Theorem coxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6124 . 2 Rel (𝐴 ∘ (𝐵 × 𝐶))
2 relxp 5701 . 2 Rel (𝐵 × (𝐴𝐶))
3 brxp 5732 . . . . . 6 (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥𝐵𝑧𝐶))
43anbi1i 624 . . . . 5 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦))
5 anass 468 . . . . 5 (((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
64, 5bitri 275 . . . 4 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
76exbii 1848 . . 3 (∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
8 vex 3483 . . . 4 𝑥 ∈ V
9 vex 3483 . . . 4 𝑦 ∈ V
108, 9opelco 5880 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦))
119elima2 6082 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶𝑧𝐴𝑦))
1211anbi2i 623 . . . 4 ((𝑥𝐵𝑦 ∈ (𝐴𝐶)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
13 opelxp 5719 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ (𝑥𝐵𝑦 ∈ (𝐴𝐶)))
14 19.42v 1953 . . . 4 (∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
1512, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
167, 10, 153bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)))
171, 2, 16eqrelriiv 5798 1 (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  cop 4630   class class class wbr 5141   × cxp 5681  cima 5686  ccom 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5142  df-opab 5204  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696
This theorem is referenced by:  cosn  48718
  Copyright terms: Public domain W3C validator