Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coxp Structured version   Visualization version   GIF version

Theorem coxp 48943
Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
coxp (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))

Proof of Theorem coxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6056 . 2 Rel (𝐴 ∘ (𝐵 × 𝐶))
2 relxp 5632 . 2 Rel (𝐵 × (𝐴𝐶))
3 brxp 5663 . . . . . 6 (𝑥(𝐵 × 𝐶)𝑧 ↔ (𝑥𝐵𝑧𝐶))
43anbi1i 624 . . . . 5 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦))
5 anass 468 . . . . 5 (((𝑥𝐵𝑧𝐶) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
64, 5bitri 275 . . . 4 ((𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ (𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
76exbii 1849 . . 3 (∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
8 vex 3440 . . . 4 𝑥 ∈ V
9 vex 3440 . . . 4 𝑦 ∈ V
108, 9opelco 5810 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ∃𝑧(𝑥(𝐵 × 𝐶)𝑧𝑧𝐴𝑦))
119elima2 6014 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶𝑧𝐴𝑦))
1211anbi2i 623 . . . 4 ((𝑥𝐵𝑦 ∈ (𝐴𝐶)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
13 opelxp 5650 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ (𝑥𝐵𝑦 ∈ (𝐴𝐶)))
14 19.42v 1954 . . . 4 (∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)) ↔ (𝑥𝐵 ∧ ∃𝑧(𝑧𝐶𝑧𝐴𝑦)))
1512, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)) ↔ ∃𝑧(𝑥𝐵 ∧ (𝑧𝐶𝑧𝐴𝑦)))
167, 10, 153bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵 × 𝐶)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × (𝐴𝐶)))
171, 2, 16eqrelriiv 5729 1 (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  cop 4579   class class class wbr 5089   × cxp 5612  cima 5617  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  cosn  48944
  Copyright terms: Public domain W3C validator