MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabli Structured version   Visualization version   GIF version

Theorem isabli 19702
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g 𝐺 ∈ Grp
isabli.b 𝐵 = (Base‘𝐺)
isabli.p + = (+g𝐺)
isabli.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabli 𝐺 ∈ Abel
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2 𝐺 ∈ Grp
2 isabli.c . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
32rgen2 3175 . 2 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)
4 isabli.b . . 3 𝐵 = (Base‘𝐺)
5 isabli.p . . 3 + = (+g𝐺)
64, 5isabl2 19696 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
71, 3, 6mpbir2an 711 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18841  Abelcabl 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-grp 18844  df-cmn 19688  df-abl 19689
This theorem is referenced by:  cnaddablx  19774  cnaddabl  19775  zaddablx  19778
  Copyright terms: Public domain W3C validator