![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabli | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
isabli.g | ⊢ 𝐺 ∈ Grp |
isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
isabli.p | ⊢ + = (+g‘𝐺) |
isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabli | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | rgen2 3197 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | isabl2 19823 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
7 | 1, 3, 6 | mpbir2an 711 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-grp 18967 df-cmn 19815 df-abl 19816 |
This theorem is referenced by: cnaddablx 19901 cnaddabl 19902 zaddablx 19905 |
Copyright terms: Public domain | W3C validator |