Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isabli | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
isabli.g | ⊢ 𝐺 ∈ Grp |
isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
isabli.p | ⊢ + = (+g‘𝐺) |
isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabli | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | isabl2 19310 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
7 | 1, 3, 6 | mpbir2an 707 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-grp 18495 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: cnaddablx 19384 cnaddabl 19385 zaddablx 19388 |
Copyright terms: Public domain | W3C validator |