| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isabli | Structured version Visualization version GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| isabli.g | ⊢ 𝐺 ∈ Grp |
| isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
| isabli.p | ⊢ + = (+g‘𝐺) |
| isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| isabli | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
| 2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 3 | 2 | rgen2 3185 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
| 4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | isabl2 19776 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 7 | 1, 3, 6 | mpbir2an 711 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Grpcgrp 18921 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-grp 18924 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: cnaddablx 19854 cnaddabl 19855 zaddablx 19858 |
| Copyright terms: Public domain | W3C validator |