![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isabli | Structured version Visualization version GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
isabli.g | ⊢ 𝐺 ∈ Grp |
isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
isabli.p | ⊢ + = (+g‘𝐺) |
isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabli | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | rgen2 3196 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | isabl2 19706 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
7 | 1, 3, 6 | mpbir2an 708 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 Grpcgrp 18861 Abelcabl 19697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-grp 18864 df-cmn 19698 df-abl 19699 |
This theorem is referenced by: cnaddablx 19784 cnaddabl 19785 zaddablx 19788 |
Copyright terms: Public domain | W3C validator |