MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabli Structured version   Visualization version   GIF version

Theorem isabli 19712
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g 𝐺 ∈ Grp
isabli.b 𝐵 = (Base‘𝐺)
isabli.p + = (+g𝐺)
isabli.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabli 𝐺 ∈ Abel
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2 𝐺 ∈ Grp
2 isabli.c . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
32rgen2 3196 . 2 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)
4 isabli.b . . 3 𝐵 = (Base‘𝐺)
5 isabli.p . . 3 + = (+g𝐺)
64, 5isabl2 19706 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
71, 3, 6mpbir2an 708 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Grpcgrp 18861  Abelcabl 19697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-grp 18864  df-cmn 19698  df-abl 19699
This theorem is referenced by:  cnaddablx  19784  cnaddabl  19785  zaddablx  19788
  Copyright terms: Public domain W3C validator