MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddablx Structured version   Visualization version   GIF version

Theorem cnaddablx 18987
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 18988 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 18988 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.)
Hypothesis
Ref Expression
cnaddablx.g 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
cnaddablx 𝐺 ∈ Abel

Proof of Theorem cnaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10617 . . 3 ℂ ∈ V
2 addex 12386 . . 3 + ∈ V
3 cnaddablx.g . . 3 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
4 addcl 10618 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5 addass 10623 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
6 0cn 10632 . . 3 0 ∈ ℂ
7 addid2 10822 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
8 negcl 10885 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 addcom 10825 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
108, 9mpdan 685 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
11 negid 10932 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1210, 11eqtr3d 2858 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
131, 2, 3, 4, 5, 6, 7, 8, 12isgrpix 18129 . 2 𝐺 ∈ Grp
141, 2, 3grpbasex 16612 . 2 ℂ = (Base‘𝐺)
151, 2, 3grpplusgx 16613 . 2 + = (+g𝐺)
16 addcom 10825 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1713, 14, 15, 16isabli 18920 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  {cpr 4568  cop 4572  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539  -cneg 10870  2c2 11691  Abelcabl 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-cmn 18907  df-abl 18908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator