Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnaddablx | Structured version Visualization version GIF version |
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 19385 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19385 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.) |
Ref | Expression |
---|---|
cnaddablx.g | ⊢ 𝐺 = {〈1, ℂ〉, 〈2, + 〉} |
Ref | Expression |
---|---|
cnaddablx | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10883 | . . 3 ⊢ ℂ ∈ V | |
2 | addex 12657 | . . 3 ⊢ + ∈ V | |
3 | cnaddablx.g | . . 3 ⊢ 𝐺 = {〈1, ℂ〉, 〈2, + 〉} | |
4 | addcl 10884 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
5 | addass 10889 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
6 | 0cn 10898 | . . 3 ⊢ 0 ∈ ℂ | |
7 | addid2 11088 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
8 | negcl 11151 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
9 | addcom 11091 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
10 | 8, 9 | mpdan 683 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
11 | negid 11198 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
12 | 10, 11 | eqtr3d 2780 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 12 | isgrpix 18521 | . 2 ⊢ 𝐺 ∈ Grp |
14 | 1, 2, 3 | grpbasex 16927 | . 2 ⊢ ℂ = (Base‘𝐺) |
15 | 1, 2, 3 | grpplusgx 16928 | . 2 ⊢ + = (+g‘𝐺) |
16 | addcom 11091 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
17 | 13, 14, 15, 16 | isabli 19316 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cpr 4560 〈cop 4564 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 -cneg 11136 2c2 11958 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |