MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddablx Structured version   Visualization version   GIF version

Theorem cnaddablx 19253
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 19254 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19254 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.)
Hypothesis
Ref Expression
cnaddablx.g 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
cnaddablx 𝐺 ∈ Abel

Proof of Theorem cnaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10810 . . 3 ℂ ∈ V
2 addex 12584 . . 3 + ∈ V
3 cnaddablx.g . . 3 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
4 addcl 10811 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5 addass 10816 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
6 0cn 10825 . . 3 0 ∈ ℂ
7 addid2 11015 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
8 negcl 11078 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 addcom 11018 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
108, 9mpdan 687 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
11 negid 11125 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1210, 11eqtr3d 2779 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
131, 2, 3, 4, 5, 6, 7, 8, 12isgrpix 18394 . 2 𝐺 ∈ Grp
141, 2, 3grpbasex 16835 . 2 ℂ = (Base‘𝐺)
151, 2, 3grpplusgx 16836 . 2 + = (+g𝐺)
16 addcom 11018 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1713, 14, 15, 16isabli 19185 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  {cpr 4543  cop 4547  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732  -cneg 11063  2c2 11885  Abelcabl 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-cmn 19172  df-abl 19173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator