MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddablx Structured version   Visualization version   GIF version

Theorem cnaddablx 19647
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 19648 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19648 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.)
Hypothesis
Ref Expression
cnaddablx.g 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
cnaddablx 𝐺 ∈ Abel

Proof of Theorem cnaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11133 . . 3 ℂ ∈ V
2 addex 12914 . . 3 + ∈ V
3 cnaddablx.g . . 3 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩}
4 addcl 11134 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5 addass 11139 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
6 0cn 11148 . . 3 0 ∈ ℂ
7 addid2 11339 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
8 negcl 11402 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
9 addcom 11342 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
108, 9mpdan 686 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
11 negid 11449 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1210, 11eqtr3d 2779 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
131, 2, 3, 4, 5, 6, 7, 8, 12isgrpix 18778 . 2 𝐺 ∈ Grp
141, 2, 3grpbasex 17173 . 2 ℂ = (Base‘𝐺)
151, 2, 3grpplusgx 17174 . 2 + = (+g𝐺)
16 addcom 11342 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1713, 14, 15, 16isabli 19579 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  {cpr 4589  cop 4593  (class class class)co 7358  cc 11050  0cc0 11052  1c1 11053   + caddc 11055  -cneg 11387  2c2 12209  Abelcabl 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-addf 11131
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-n0 12415  df-z 12501  df-uz 12765  df-fz 13426  df-struct 17020  df-slot 17055  df-ndx 17067  df-base 17085  df-plusg 17147  df-0g 17324  df-mgm 18498  df-sgrp 18547  df-mnd 18558  df-grp 18752  df-cmn 19565  df-abl 19566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator