![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddablx | Structured version Visualization version GIF version |
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl 19648 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19648 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.) |
Ref | Expression |
---|---|
cnaddablx.g | ⊢ 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩} |
Ref | Expression |
---|---|
cnaddablx | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11133 | . . 3 ⊢ ℂ ∈ V | |
2 | addex 12914 | . . 3 ⊢ + ∈ V | |
3 | cnaddablx.g | . . 3 ⊢ 𝐺 = {⟨1, ℂ⟩, ⟨2, + ⟩} | |
4 | addcl 11134 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
5 | addass 11139 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
6 | 0cn 11148 | . . 3 ⊢ 0 ∈ ℂ | |
7 | addid2 11339 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
8 | negcl 11402 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
9 | addcom 11342 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
10 | 8, 9 | mpdan 686 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
11 | negid 11449 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
12 | 10, 11 | eqtr3d 2779 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 12 | isgrpix 18778 | . 2 ⊢ 𝐺 ∈ Grp |
14 | 1, 2, 3 | grpbasex 17173 | . 2 ⊢ ℂ = (Base‘𝐺) |
15 | 1, 2, 3 | grpplusgx 17174 | . 2 ⊢ + = (+g‘𝐺) |
16 | addcom 11342 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
17 | 13, 14, 15, 16 | isabli 19579 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {cpr 4589 ⟨cop 4593 (class class class)co 7358 ℂcc 11050 0cc0 11052 1c1 11053 + caddc 11055 -cneg 11387 2c2 12209 Abelcabl 19564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-addf 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 df-struct 17020 df-slot 17055 df-ndx 17067 df-base 17085 df-plusg 17147 df-0g 17324 df-mgm 18498 df-sgrp 18547 df-mnd 18558 df-grp 18752 df-cmn 19565 df-abl 19566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |