| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zaddablx | Structured version Visualization version GIF version | ||
| Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21405 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| zaddablx.g | ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} |
| Ref | Expression |
|---|---|
| zaddablx | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12606 | . . 3 ⊢ ℤ ∈ V | |
| 2 | addex 13014 | . . 3 ⊢ + ∈ V | |
| 3 | zaddablx.g | . . 3 ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} | |
| 4 | zaddcl 12641 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 5 | zcn 12602 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 6 | zcn 12602 | . . . 4 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 7 | zcn 12602 | . . . 4 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
| 8 | addass 11225 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 9 | 5, 6, 7, 8 | syl3an 1160 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 10 | 0z 12608 | . . 3 ⊢ 0 ∈ ℤ | |
| 11 | 5 | addlidd 11445 | . . 3 ⊢ (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥) |
| 12 | znegcl 12636 | . . 3 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 13 | zcn 12602 | . . . . . 6 ⊢ (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ) | |
| 14 | addcom 11430 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
| 15 | 5, 13, 14 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 16 | 12, 15 | mpdan 687 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 17 | 5 | negidd 11593 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0) |
| 18 | 16, 17 | eqtr3d 2771 | . . 3 ⊢ (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0) |
| 19 | 1, 2, 3, 4, 9, 10, 11, 12, 18 | isgrpix 18956 | . 2 ⊢ 𝐺 ∈ Grp |
| 20 | 1, 2, 3 | grpbasex 17313 | . 2 ⊢ ℤ = (Base‘𝐺) |
| 21 | 1, 2, 3 | grpplusgx 17314 | . 2 ⊢ + = (+g‘𝐺) |
| 22 | addcom 11430 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 23 | 5, 6, 22 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 24 | 19, 20, 21, 23 | isabli 19787 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cpr 4610 〈cop 4614 (class class class)co 7414 ℂcc 11136 0cc0 11138 1c1 11139 + caddc 11141 -cneg 11476 2c2 12304 ℤcz 12597 Abelcabl 19772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-cmn 19773 df-abl 19774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |