MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddablx Structured version   Visualization version   GIF version

Theorem zaddablx 18635
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 20166 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
zaddablx.g 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
zaddablx 𝐺 ∈ Abel

Proof of Theorem zaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11720 . . 3 ℤ ∈ V
2 addex 12117 . . 3 + ∈ V
3 zaddablx.g . . 3 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩}
4 zaddcl 11752 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
5 zcn 11716 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 zcn 11716 . . . 4 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 11716 . . . 4 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
8 addass 10346 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
95, 6, 7, 8syl3an 1203 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 0z 11722 . . 3 0 ∈ ℤ
115addid2d 10563 . . 3 (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥)
12 znegcl 11747 . . 3 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
13 zcn 11716 . . . . . 6 (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ)
14 addcom 10548 . . . . . 6 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
155, 13, 14syl2an 589 . . . . 5 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
1612, 15mpdan 678 . . . 4 (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
175negidd 10710 . . . 4 (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0)
1816, 17eqtr3d 2863 . . 3 (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0)
191, 2, 3, 4, 9, 10, 11, 12, 18isgrpix 17810 . 2 𝐺 ∈ Grp
201, 2, 3grpbasex 16360 . 2 ℤ = (Base‘𝐺)
211, 2, 3grpplusgx 16361 . 2 + = (+g𝐺)
22 addcom 10548 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
235, 6, 22syl2an 589 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2419, 20, 21, 23isabli 18567 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wcel 2164  {cpr 4401  cop 4405  (class class class)co 6910  cc 10257  0cc0 10259  1c1 10260   + caddc 10262  -cneg 10593  2c2 11413  cz 11711  Abelcabl 18554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-addf 10338
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-cmn 18555  df-abl 18556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator