| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zaddablx | Structured version Visualization version GIF version | ||
| Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21313 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| zaddablx.g | ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} |
| Ref | Expression |
|---|---|
| zaddablx | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12514 | . . 3 ⊢ ℤ ∈ V | |
| 2 | addex 12924 | . . 3 ⊢ + ∈ V | |
| 3 | zaddablx.g | . . 3 ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} | |
| 4 | zaddcl 12549 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 5 | zcn 12510 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 6 | zcn 12510 | . . . 4 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 7 | zcn 12510 | . . . 4 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
| 8 | addass 11131 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 9 | 5, 6, 7, 8 | syl3an 1160 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 10 | 0z 12516 | . . 3 ⊢ 0 ∈ ℤ | |
| 11 | 5 | addlidd 11351 | . . 3 ⊢ (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥) |
| 12 | znegcl 12544 | . . 3 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 13 | zcn 12510 | . . . . . 6 ⊢ (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ) | |
| 14 | addcom 11336 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
| 15 | 5, 13, 14 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 16 | 12, 15 | mpdan 687 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 17 | 5 | negidd 11499 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0) |
| 18 | 16, 17 | eqtr3d 2766 | . . 3 ⊢ (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0) |
| 19 | 1, 2, 3, 4, 9, 10, 11, 12, 18 | isgrpix 18872 | . 2 ⊢ 𝐺 ∈ Grp |
| 20 | 1, 2, 3 | grpbasex 17231 | . 2 ⊢ ℤ = (Base‘𝐺) |
| 21 | 1, 2, 3 | grpplusgx 17232 | . 2 ⊢ + = (+g‘𝐺) |
| 22 | addcom 11336 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 23 | 5, 6, 22 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 24 | 19, 20, 21, 23 | isabli 19702 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cpr 4587 〈cop 4591 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 -cneg 11382 2c2 12217 ℤcz 12505 Abelcabl 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-cmn 19688 df-abl 19689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |