![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zaddablx | Structured version Visualization version GIF version |
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 20166 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
zaddablx.g | ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} |
Ref | Expression |
---|---|
zaddablx | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 11720 | . . 3 ⊢ ℤ ∈ V | |
2 | addex 12117 | . . 3 ⊢ + ∈ V | |
3 | zaddablx.g | . . 3 ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} | |
4 | zaddcl 11752 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
5 | zcn 11716 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
6 | zcn 11716 | . . . 4 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 11716 | . . . 4 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
8 | addass 10346 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
9 | 5, 6, 7, 8 | syl3an 1203 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 0z 11722 | . . 3 ⊢ 0 ∈ ℤ | |
11 | 5 | addid2d 10563 | . . 3 ⊢ (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥) |
12 | znegcl 11747 | . . 3 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
13 | zcn 11716 | . . . . . 6 ⊢ (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ) | |
14 | addcom 10548 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
15 | 5, 13, 14 | syl2an 589 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
16 | 12, 15 | mpdan 678 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
17 | 5 | negidd 10710 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0) |
18 | 16, 17 | eqtr3d 2863 | . . 3 ⊢ (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0) |
19 | 1, 2, 3, 4, 9, 10, 11, 12, 18 | isgrpix 17810 | . 2 ⊢ 𝐺 ∈ Grp |
20 | 1, 2, 3 | grpbasex 16360 | . 2 ⊢ ℤ = (Base‘𝐺) |
21 | 1, 2, 3 | grpplusgx 16361 | . 2 ⊢ + = (+g‘𝐺) |
22 | addcom 10548 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
23 | 5, 6, 22 | syl2an 589 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
24 | 19, 20, 21, 23 | isabli 18567 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 {cpr 4401 〈cop 4405 (class class class)co 6910 ℂcc 10257 0cc0 10259 1c1 10260 + caddc 10262 -cneg 10593 2c2 11413 ℤcz 11711 Abelcabl 18554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-addf 10338 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-cmn 18555 df-abl 18556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |