![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zaddablx | Structured version Visualization version GIF version |
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21281 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
zaddablx.g | ⊢ 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩} |
Ref | Expression |
---|---|
zaddablx | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12563 | . . 3 ⊢ ℤ ∈ V | |
2 | addex 12968 | . . 3 ⊢ + ∈ V | |
3 | zaddablx.g | . . 3 ⊢ 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩} | |
4 | zaddcl 12598 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
5 | zcn 12559 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
6 | zcn 12559 | . . . 4 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 12559 | . . . 4 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
8 | addass 11192 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
9 | 5, 6, 7, 8 | syl3an 1157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 0z 12565 | . . 3 ⊢ 0 ∈ ℤ | |
11 | 5 | addlidd 11411 | . . 3 ⊢ (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥) |
12 | znegcl 12593 | . . 3 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
13 | zcn 12559 | . . . . . 6 ⊢ (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ) | |
14 | addcom 11396 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
15 | 5, 13, 14 | syl2an 595 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
16 | 12, 15 | mpdan 684 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
17 | 5 | negidd 11557 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0) |
18 | 16, 17 | eqtr3d 2766 | . . 3 ⊢ (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0) |
19 | 1, 2, 3, 4, 9, 10, 11, 12, 18 | isgrpix 18883 | . 2 ⊢ 𝐺 ∈ Grp |
20 | 1, 2, 3 | grpbasex 17234 | . 2 ⊢ ℤ = (Base‘𝐺) |
21 | 1, 2, 3 | grpplusgx 17235 | . 2 ⊢ + = (+g‘𝐺) |
22 | addcom 11396 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
23 | 5, 6, 22 | syl2an 595 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
24 | 19, 20, 21, 23 | isabli 19705 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cpr 4622 ⟨cop 4626 (class class class)co 7401 ℂcc 11103 0cc0 11105 1c1 11106 + caddc 11108 -cneg 11441 2c2 12263 ℤcz 12554 Abelcabl 19690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-slot 17113 df-ndx 17125 df-base 17143 df-plusg 17208 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-cmn 19691 df-abl 19692 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |