| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zaddablx | Structured version Visualization version GIF version | ||
| Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21352 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| zaddablx.g | ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} |
| Ref | Expression |
|---|---|
| zaddablx | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12472 | . . 3 ⊢ ℤ ∈ V | |
| 2 | addex 12882 | . . 3 ⊢ + ∈ V | |
| 3 | zaddablx.g | . . 3 ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} | |
| 4 | zaddcl 12507 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
| 5 | zcn 12468 | . . . 4 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 6 | zcn 12468 | . . . 4 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 7 | zcn 12468 | . . . 4 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
| 8 | addass 11088 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 9 | 5, 6, 7, 8 | syl3an 1160 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 10 | 0z 12474 | . . 3 ⊢ 0 ∈ ℤ | |
| 11 | 5 | addlidd 11309 | . . 3 ⊢ (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥) |
| 12 | znegcl 12502 | . . 3 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 13 | zcn 12468 | . . . . . 6 ⊢ (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ) | |
| 14 | addcom 11294 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
| 15 | 5, 13, 14 | syl2an 596 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 16 | 12, 15 | mpdan 687 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 17 | 5 | negidd 11457 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0) |
| 18 | 16, 17 | eqtr3d 2768 | . . 3 ⊢ (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0) |
| 19 | 1, 2, 3, 4, 9, 10, 11, 12, 18 | isgrpix 18872 | . 2 ⊢ 𝐺 ∈ Grp |
| 20 | 1, 2, 3 | grpbasex 17191 | . 2 ⊢ ℤ = (Base‘𝐺) |
| 21 | 1, 2, 3 | grpplusgx 17192 | . 2 ⊢ + = (+g‘𝐺) |
| 22 | addcom 11294 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 23 | 5, 6, 22 | syl2an 596 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 24 | 19, 20, 21, 23 | isabli 19703 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cpr 4573 〈cop 4577 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 -cneg 11340 2c2 12175 ℤcz 12463 Abelcabl 19688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-cmn 19689 df-abl 19690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |