MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddablx Structured version   Visualization version   GIF version

Theorem zaddablx 19781
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21281 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
zaddablx.g 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩}
Assertion
Ref Expression
zaddablx 𝐺 ∈ Abel

Proof of Theorem zaddablx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12563 . . 3 ℤ ∈ V
2 addex 12968 . . 3 + ∈ V
3 zaddablx.g . . 3 𝐺 = {⟨1, ℤ⟩, ⟨2, + ⟩}
4 zaddcl 12598 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
5 zcn 12559 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 zcn 12559 . . . 4 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 12559 . . . 4 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
8 addass 11192 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
95, 6, 7, 8syl3an 1157 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 0z 12565 . . 3 0 ∈ ℤ
115addlidd 11411 . . 3 (𝑥 ∈ ℤ → (0 + 𝑥) = 𝑥)
12 znegcl 12593 . . 3 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
13 zcn 12559 . . . . . 6 (-𝑥 ∈ ℤ → -𝑥 ∈ ℂ)
14 addcom 11396 . . . . . 6 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
155, 13, 14syl2an 595 . . . . 5 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℤ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
1612, 15mpdan 684 . . . 4 (𝑥 ∈ ℤ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
175negidd 11557 . . . 4 (𝑥 ∈ ℤ → (𝑥 + -𝑥) = 0)
1816, 17eqtr3d 2766 . . 3 (𝑥 ∈ ℤ → (-𝑥 + 𝑥) = 0)
191, 2, 3, 4, 9, 10, 11, 12, 18isgrpix 18883 . 2 𝐺 ∈ Grp
201, 2, 3grpbasex 17234 . 2 ℤ = (Base‘𝐺)
211, 2, 3grpplusgx 17235 . 2 + = (+g𝐺)
22 addcom 11396 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
235, 6, 22syl2an 595 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2419, 20, 21, 23isabli 19705 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cpr 4622  cop 4626  (class class class)co 7401  cc 11103  0cc0 11105  1c1 11106   + caddc 11108  -cneg 11441  2c2 12263  cz 12554  Abelcabl 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17078  df-slot 17113  df-ndx 17125  df-base 17143  df-plusg 17208  df-0g 17385  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-grp 18855  df-cmn 19691  df-abl 19692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator