Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnaddabl | Structured version Visualization version GIF version |
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 19469 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 20620. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
cnaddabl | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10952 | . . . 4 ⊢ ℂ ∈ V | |
2 | cnaddabl.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
3 | 2 | grpbase 16996 | . . . 4 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℂ = (Base‘𝐺) |
5 | addex 12728 | . . . 4 ⊢ + ∈ V | |
6 | 2 | grpplusg 16998 | . . . 4 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐺) |
8 | addcl 10953 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
9 | addass 10958 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
10 | 0cn 10967 | . . 3 ⊢ 0 ∈ ℂ | |
11 | addid2 11158 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
12 | negcl 11221 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
13 | addcom 11161 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
14 | 12, 13 | mpdan 684 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
15 | negid 11268 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
16 | 14, 15 | eqtr3d 2780 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
17 | 4, 7, 8, 9, 10, 11, 12, 16 | isgrpi 18602 | . 2 ⊢ 𝐺 ∈ Grp |
18 | addcom 11161 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
19 | 17, 4, 7, 18 | isabli 19401 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 + caddc 10874 -cneg 11206 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-cmn 19388 df-abl 19389 |
This theorem is referenced by: cnaddinv 19472 cnaddcom 36986 |
Copyright terms: Public domain | W3C validator |