![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddabl | Structured version Visualization version GIF version |
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 19778 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21168. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} |
Ref | Expression |
---|---|
cnaddabl | β’ πΊ β Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11195 | . . . 4 β’ β β V | |
2 | cnaddabl.g | . . . . 5 β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} | |
3 | 2 | grpbase 17236 | . . . 4 β’ (β β V β β = (BaseβπΊ)) |
4 | 1, 3 | ax-mp 5 | . . 3 β’ β = (BaseβπΊ) |
5 | addex 12977 | . . . 4 β’ + β V | |
6 | 2 | grpplusg 17238 | . . . 4 β’ ( + β V β + = (+gβπΊ)) |
7 | 5, 6 | ax-mp 5 | . . 3 β’ + = (+gβπΊ) |
8 | addcl 11196 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) | |
9 | addass 11201 | . . 3 β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) | |
10 | 0cn 11211 | . . 3 β’ 0 β β | |
11 | addlid 11402 | . . 3 β’ (π₯ β β β (0 + π₯) = π₯) | |
12 | negcl 11465 | . . 3 β’ (π₯ β β β -π₯ β β) | |
13 | addcom 11405 | . . . . 5 β’ ((π₯ β β β§ -π₯ β β) β (π₯ + -π₯) = (-π₯ + π₯)) | |
14 | 12, 13 | mpdan 684 | . . . 4 β’ (π₯ β β β (π₯ + -π₯) = (-π₯ + π₯)) |
15 | negid 11512 | . . . 4 β’ (π₯ β β β (π₯ + -π₯) = 0) | |
16 | 14, 15 | eqtr3d 2773 | . . 3 β’ (π₯ β β β (-π₯ + π₯) = 0) |
17 | 4, 7, 8, 9, 10, 11, 12, 16 | isgrpi 18882 | . 2 β’ πΊ β Grp |
18 | addcom 11405 | . 2 β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) = (π¦ + π₯)) | |
19 | 17, 4, 7, 18 | isabli 19706 | 1 β’ πΊ β Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 Vcvv 3473 {cpr 4630 β¨cop 4634 βcfv 6543 (class class class)co 7412 βcc 11112 0cc0 11114 + caddc 11117 -cneg 11450 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 Abelcabl 19691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-cmn 19692 df-abl 19693 |
This theorem is referenced by: cnaddinv 19781 cnaddcom 38146 |
Copyright terms: Public domain | W3C validator |