| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnaddabl | Structured version Visualization version GIF version | ||
| Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 19783 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21333. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
| Ref | Expression |
|---|---|
| cnaddabl | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11127 | . . . 4 ⊢ ℂ ∈ V | |
| 2 | cnaddabl.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
| 3 | 2 | grpbase 17229 | . . . 4 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℂ = (Base‘𝐺) |
| 5 | addex 12926 | . . . 4 ⊢ + ∈ V | |
| 6 | 2 | grpplusg 17230 | . . . 4 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐺) |
| 8 | addcl 11128 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 9 | addass 11133 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 10 | 0cn 11144 | . . 3 ⊢ 0 ∈ ℂ | |
| 11 | addlid 11335 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 12 | negcl 11399 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 13 | addcom 11338 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
| 14 | 12, 13 | mpdan 687 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 15 | negid 11447 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 16 | 14, 15 | eqtr3d 2766 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
| 17 | 4, 7, 8, 9, 10, 11, 12, 16 | isgrpi 18874 | . 2 ⊢ 𝐺 ∈ Grp |
| 18 | addcom 11338 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 19 | 17, 4, 7, 18 | isabli 19711 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 {cpr 4587 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 0cc0 11046 + caddc 11049 -cneg 11384 ndxcnx 17140 Basecbs 17156 +gcplusg 17197 Abelcabl 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-cmn 19697 df-abl 19698 |
| This theorem is referenced by: cnaddinv 19786 cnaddcom 38959 |
| Copyright terms: Public domain | W3C validator |