![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddabl | Structured version Visualization version GIF version |
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 19835 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21335. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
cnaddabl | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11221 | . . . 4 ⊢ ℂ ∈ V | |
2 | cnaddabl.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
3 | 2 | grpbase 17270 | . . . 4 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℂ = (Base‘𝐺) |
5 | addex 13006 | . . . 4 ⊢ + ∈ V | |
6 | 2 | grpplusg 17272 | . . . 4 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐺) |
8 | addcl 11222 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
9 | addass 11227 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
10 | 0cn 11238 | . . 3 ⊢ 0 ∈ ℂ | |
11 | addlid 11429 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
12 | negcl 11492 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
13 | addcom 11432 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
14 | 12, 13 | mpdan 685 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
15 | negid 11539 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
16 | 14, 15 | eqtr3d 2767 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
17 | 4, 7, 8, 9, 10, 11, 12, 16 | isgrpi 18924 | . 2 ⊢ 𝐺 ∈ Grp |
18 | addcom 11432 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
19 | 17, 4, 7, 18 | isabli 19763 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3461 {cpr 4632 〈cop 4636 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 0cc0 11140 + caddc 11143 -cneg 11477 ndxcnx 17165 Basecbs 17183 +gcplusg 17236 Abelcabl 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-cmn 19749 df-abl 19750 |
This theorem is referenced by: cnaddinv 19838 cnaddcom 38571 |
Copyright terms: Public domain | W3C validator |