| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnaddabl | Structured version Visualization version GIF version | ||
| Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 19886 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21403. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
| Ref | Expression |
|---|---|
| cnaddabl | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11236 | . . . 4 ⊢ ℂ ∈ V | |
| 2 | cnaddabl.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
| 3 | 2 | grpbase 17330 | . . . 4 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℂ = (Base‘𝐺) |
| 5 | addex 13031 | . . . 4 ⊢ + ∈ V | |
| 6 | 2 | grpplusg 17332 | . . . 4 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐺) |
| 8 | addcl 11237 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 9 | addass 11242 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 10 | 0cn 11253 | . . 3 ⊢ 0 ∈ ℂ | |
| 11 | addlid 11444 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 12 | negcl 11508 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 13 | addcom 11447 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
| 14 | 12, 13 | mpdan 687 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
| 15 | negid 11556 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 16 | 14, 15 | eqtr3d 2779 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
| 17 | 4, 7, 8, 9, 10, 11, 12, 16 | isgrpi 18977 | . 2 ⊢ 𝐺 ∈ Grp |
| 18 | addcom 11447 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 19 | 17, 4, 7, 18 | isabli 19814 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 {cpr 4628 〈cop 4632 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 + caddc 11158 -cneg 11493 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 Abelcabl 19799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-cmn 19800 df-abl 19801 |
| This theorem is referenced by: cnaddinv 19889 cnaddcom 38973 |
| Copyright terms: Public domain | W3C validator |