MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   GIF version

Theorem cmetcusp1 25253
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x 𝑋 = (Base‘𝐹)
cmetcusp1.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
cmetcusp1.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
cmetcusp1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)

Proof of Theorem cmetcusp1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cmsms 25248 . . . 4 (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp)
2 msxms 24342 . . . 4 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
31, 2syl 17 . . 3 (𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp)
4 cmetcusp1.x . . . 4 𝑋 = (Base‘𝐹)
5 cmetcusp1.d . . . 4 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
6 cmetcusp1.u . . . 4 𝑈 = (UnifSt‘𝐹)
74, 5, 6xmsusp 24457 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
83, 7syl3an2 1164 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
9 simpl3 1194 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷))
109fveq2d 6862 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu𝑈) = (CauFilu‘(metUnif‘𝐷)))
1110eleq2d 2814 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))))
12 simpl1 1192 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅)
134, 5cmscmet 25246 . . . . . . . . 9 (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
14 cmetmet 25186 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
15 metxmet 24222 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1613, 14, 153syl 18 . . . . . . . 8 (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋))
17163ad2ant2 1134 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
1817adantr 480 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpr 484 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋))
20 cfilucfil4 25221 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2112, 18, 19, 20syl3anc 1373 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2211, 21bitrd 279 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷)))
23 eqid 2729 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2423iscmet 25184 . . . . . . . . . . 11 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
2524simprbi 496 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
2613, 25syl 17 . . . . . . . . 9 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
27 eqid 2729 . . . . . . . . . . . . . 14 (TopOpen‘𝐹) = (TopOpen‘𝐹)
2827, 4, 5xmstopn 24339 . . . . . . . . . . . . 13 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
293, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ CMetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
3029oveq1d 7402 . . . . . . . . . . 11 (𝐹 ∈ CMetSp → ((TopOpen‘𝐹) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
3130neeq1d 2984 . . . . . . . . . 10 (𝐹 ∈ CMetSp → (((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3231ralbidv 3156 . . . . . . . . 9 (𝐹 ∈ CMetSp → (∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3326, 32mpbird 257 . . . . . . . 8 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3433r19.21bi 3229 . . . . . . 7 ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3534ex 412 . . . . . 6 (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
36353ad2ant2 1134 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3736adantr 480 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3822, 37sylbid 240 . . 3 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3938ralrimiva 3125 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
404, 6, 27iscusp2 24189 . 2 (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)))
418, 39, 40sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4296   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  TopOpenctopn 17384  ∞Metcxmet 21249  Metcmet 21250  MetOpencmopn 21254  metUnifcmetu 21255  Filcfil 23732   fLim cflim 23821  UnifStcuss 24141  UnifSpcusp 24142  CauFiluccfilu 24173  CUnifSpccusp 24184  ∞MetSpcxms 24205  MetSpcms 24206  CauFilccfil 25152  CMetccmet 25154  CMetSpccms 25232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-metu 21263  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-fil 23733  df-ust 24088  df-utop 24119  df-usp 24145  df-cfilu 24174  df-cusp 24185  df-xms 24208  df-ms 24209  df-cfil 25155  df-cmet 25157  df-cms 25235
This theorem is referenced by:  cnfldcusp  25257  recusp  25282
  Copyright terms: Public domain W3C validator