MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   GIF version

Theorem cmetcusp1 25406
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x 𝑋 = (Base‘𝐹)
cmetcusp1.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
cmetcusp1.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
cmetcusp1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)

Proof of Theorem cmetcusp1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cmsms 25401 . . . 4 (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp)
2 msxms 24485 . . . 4 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
31, 2syl 17 . . 3 (𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp)
4 cmetcusp1.x . . . 4 𝑋 = (Base‘𝐹)
5 cmetcusp1.d . . . 4 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
6 cmetcusp1.u . . . 4 𝑈 = (UnifSt‘𝐹)
74, 5, 6xmsusp 24603 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
83, 7syl3an2 1164 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
9 simpl3 1193 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷))
109fveq2d 6924 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu𝑈) = (CauFilu‘(metUnif‘𝐷)))
1110eleq2d 2830 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))))
12 simpl1 1191 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅)
134, 5cmscmet 25399 . . . . . . . . 9 (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
14 cmetmet 25339 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
15 metxmet 24365 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1613, 14, 153syl 18 . . . . . . . 8 (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋))
17163ad2ant2 1134 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
1817adantr 480 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpr 484 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋))
20 cfilucfil4 25374 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2112, 18, 19, 20syl3anc 1371 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2211, 21bitrd 279 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷)))
23 eqid 2740 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2423iscmet 25337 . . . . . . . . . . 11 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
2524simprbi 496 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
2613, 25syl 17 . . . . . . . . 9 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
27 eqid 2740 . . . . . . . . . . . . . 14 (TopOpen‘𝐹) = (TopOpen‘𝐹)
2827, 4, 5xmstopn 24482 . . . . . . . . . . . . 13 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
293, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ CMetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
3029oveq1d 7463 . . . . . . . . . . 11 (𝐹 ∈ CMetSp → ((TopOpen‘𝐹) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
3130neeq1d 3006 . . . . . . . . . 10 (𝐹 ∈ CMetSp → (((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3231ralbidv 3184 . . . . . . . . 9 (𝐹 ∈ CMetSp → (∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3326, 32mpbird 257 . . . . . . . 8 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3433r19.21bi 3257 . . . . . . 7 ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3534ex 412 . . . . . 6 (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
36353ad2ant2 1134 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3736adantr 480 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3822, 37sylbid 240 . . 3 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3938ralrimiva 3152 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
404, 6, 27iscusp2 24332 . 2 (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)))
418, 39, 40sylanbrc 582 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TopOpenctopn 17481  ∞Metcxmet 21372  Metcmet 21373  MetOpencmopn 21377  metUnifcmetu 21378  Filcfil 23874   fLim cflim 23963  UnifStcuss 24283  UnifSpcusp 24284  CauFiluccfilu 24316  CUnifSpccusp 24327  ∞MetSpcxms 24348  MetSpcms 24349  CauFilccfil 25305  CMetccmet 25307  CMetSpccms 25385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-metu 21386  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-fil 23875  df-ust 24230  df-utop 24261  df-usp 24287  df-cfilu 24317  df-cusp 24328  df-xms 24351  df-ms 24352  df-cfil 25308  df-cmet 25310  df-cms 25388
This theorem is referenced by:  cnfldcusp  25410  recusp  25435
  Copyright terms: Public domain W3C validator