MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   GIF version

Theorem cmetcusp1 23883
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x 𝑋 = (Base‘𝐹)
cmetcusp1.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
cmetcusp1.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
cmetcusp1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)

Proof of Theorem cmetcusp1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cmsms 23878 . . . 4 (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp)
2 msxms 22991 . . . 4 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
31, 2syl 17 . . 3 (𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp)
4 cmetcusp1.x . . . 4 𝑋 = (Base‘𝐹)
5 cmetcusp1.d . . . 4 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
6 cmetcusp1.u . . . 4 𝑈 = (UnifSt‘𝐹)
74, 5, 6xmsusp 23106 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
83, 7syl3an2 1156 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
9 simpl3 1185 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷))
109fveq2d 6667 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu𝑈) = (CauFilu‘(metUnif‘𝐷)))
1110eleq2d 2895 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))))
12 simpl1 1183 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅)
134, 5cmscmet 23876 . . . . . . . . 9 (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
14 cmetmet 23816 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
15 metxmet 22871 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1613, 14, 153syl 18 . . . . . . . 8 (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋))
17163ad2ant2 1126 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
1817adantr 481 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpr 485 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋))
20 cfilucfil4 23851 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2112, 18, 19, 20syl3anc 1363 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2211, 21bitrd 280 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷)))
23 eqid 2818 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2423iscmet 23814 . . . . . . . . . . 11 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
2524simprbi 497 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
2613, 25syl 17 . . . . . . . . 9 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
27 eqid 2818 . . . . . . . . . . . . . 14 (TopOpen‘𝐹) = (TopOpen‘𝐹)
2827, 4, 5xmstopn 22988 . . . . . . . . . . . . 13 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
293, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ CMetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
3029oveq1d 7160 . . . . . . . . . . 11 (𝐹 ∈ CMetSp → ((TopOpen‘𝐹) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
3130neeq1d 3072 . . . . . . . . . 10 (𝐹 ∈ CMetSp → (((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3231ralbidv 3194 . . . . . . . . 9 (𝐹 ∈ CMetSp → (∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3326, 32mpbird 258 . . . . . . . 8 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3433r19.21bi 3205 . . . . . . 7 ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3534ex 413 . . . . . 6 (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
36353ad2ant2 1126 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3736adantr 481 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3822, 37sylbid 241 . . 3 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3938ralrimiva 3179 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
404, 6, 27iscusp2 22838 . 2 (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)))
418, 39, 40sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  c0 4288   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  Basecbs 16471  distcds 16562  TopOpenctopn 16683  ∞Metcxmet 20458  Metcmet 20459  MetOpencmopn 20463  metUnifcmetu 20464  Filcfil 22381   fLim cflim 22470  UnifStcuss 22789  UnifSpcusp 22790  CauFiluccfilu 22822  CUnifSpccusp 22833  ∞MetSpcxms 22854  MetSpcms 22855  CauFilccfil 23782  CMetccmet 23784  CMetSpccms 23862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-metu 20472  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-fil 22382  df-ust 22736  df-utop 22767  df-usp 22793  df-cfilu 22823  df-cusp 22834  df-xms 22857  df-ms 22858  df-cfil 23785  df-cmet 23787  df-cms 23865
This theorem is referenced by:  cnfldcusp  23887  recusp  23912
  Copyright terms: Public domain W3C validator