MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcusp1 Structured version   Visualization version   GIF version

Theorem cmetcusp1 24717
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
cmetcusp1.x 𝑋 = (Base‘𝐹)
cmetcusp1.d 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
cmetcusp1.u 𝑈 = (UnifSt‘𝐹)
Assertion
Ref Expression
cmetcusp1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)

Proof of Theorem cmetcusp1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cmsms 24712 . . . 4 (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp)
2 msxms 23807 . . . 4 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
31, 2syl 17 . . 3 (𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp)
4 cmetcusp1.x . . . 4 𝑋 = (Base‘𝐹)
5 cmetcusp1.d . . . 4 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋))
6 cmetcusp1.u . . . 4 𝑈 = (UnifSt‘𝐹)
74, 5, 6xmsusp 23925 . . 3 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
83, 7syl3an2 1164 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp)
9 simpl3 1193 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷))
109fveq2d 6846 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu𝑈) = (CauFilu‘(metUnif‘𝐷)))
1110eleq2d 2823 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(metUnif‘𝐷))))
12 simpl1 1191 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅)
134, 5cmscmet 24710 . . . . . . . . 9 (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
14 cmetmet 24650 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
15 metxmet 23687 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1613, 14, 153syl 18 . . . . . . . 8 (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋))
17163ad2ant2 1134 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
1817adantr 481 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpr 485 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋))
20 cfilucfil4 24685 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2112, 18, 19, 20syl3anc 1371 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷)))
2211, 21bitrd 278 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷)))
23 eqid 2736 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2423iscmet 24648 . . . . . . . . . . 11 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
2524simprbi 497 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
2613, 25syl 17 . . . . . . . . 9 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)
27 eqid 2736 . . . . . . . . . . . . . 14 (TopOpen‘𝐹) = (TopOpen‘𝐹)
2827, 4, 5xmstopn 23804 . . . . . . . . . . . . 13 (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
293, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ CMetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷))
3029oveq1d 7372 . . . . . . . . . . 11 (𝐹 ∈ CMetSp → ((TopOpen‘𝐹) fLim 𝑐) = ((MetOpen‘𝐷) fLim 𝑐))
3130neeq1d 3003 . . . . . . . . . 10 (𝐹 ∈ CMetSp → (((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3231ralbidv 3174 . . . . . . . . 9 (𝐹 ∈ CMetSp → (∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅))
3326, 32mpbird 256 . . . . . . . 8 (𝐹 ∈ CMetSp → ∀𝑐 ∈ (CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3433r19.21bi 3234 . . . . . . 7 ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)
3534ex 413 . . . . . 6 (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
36353ad2ant2 1134 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3736adantr 481 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3822, 37sylbid 239 . . 3 (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
3938ralrimiva 3143 . 2 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))
404, 6, 27iscusp2 23654 . 2 (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)))
418, 39, 40sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  c0 4282   × cxp 5631  cres 5635  cfv 6496  (class class class)co 7357  Basecbs 17083  distcds 17142  TopOpenctopn 17303  ∞Metcxmet 20781  Metcmet 20782  MetOpencmopn 20786  metUnifcmetu 20787  Filcfil 23196   fLim cflim 23285  UnifStcuss 23605  UnifSpcusp 23606  CauFiluccfilu 23638  CUnifSpccusp 23649  ∞MetSpcxms 23670  MetSpcms 23671  CauFilccfil 24616  CMetccmet 24618  CMetSpccms 24696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-metu 20795  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-fil 23197  df-ust 23552  df-utop 23583  df-usp 23609  df-cfilu 23639  df-cusp 23650  df-xms 23673  df-ms 23674  df-cfil 24619  df-cmet 24621  df-cms 24699
This theorem is referenced by:  cnfldcusp  24721  recusp  24746
  Copyright terms: Public domain W3C validator