Step | Hyp | Ref
| Expression |
1 | | cmsms 24417 |
. . . 4
⊢ (𝐹 ∈ CMetSp → 𝐹 ∈ MetSp) |
2 | | msxms 23515 |
. . . 4
⊢ (𝐹 ∈ MetSp → 𝐹 ∈
∞MetSp) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐹 ∈ CMetSp → 𝐹 ∈
∞MetSp) |
4 | | cmetcusp1.x |
. . . 4
⊢ 𝑋 = (Base‘𝐹) |
5 | | cmetcusp1.d |
. . . 4
⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) |
6 | | cmetcusp1.u |
. . . 4
⊢ 𝑈 = (UnifSt‘𝐹) |
7 | 4, 5, 6 | xmsusp 23631 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
8 | 3, 7 | syl3an2 1162 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
9 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑈 = (metUnif‘𝐷)) |
10 | 9 | fveq2d 6760 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (CauFilu‘𝑈) =
(CauFilu‘(metUnif‘𝐷))) |
11 | 10 | eleq2d 2824 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈
(CauFilu‘(metUnif‘𝐷)))) |
12 | | simpl1 1189 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑋 ≠ ∅) |
13 | 4, 5 | cmscmet 24415 |
. . . . . . . . 9
⊢ (𝐹 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
14 | | cmetmet 24355 |
. . . . . . . . 9
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
15 | | metxmet 23395 |
. . . . . . . . 9
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
16 | 13, 14, 15 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 ∈ CMetSp → 𝐷 ∈ (∞Met‘𝑋)) |
17 | 16 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
19 | | simpr 484 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → 𝑐 ∈ (Fil‘𝑋)) |
20 | | cfilucfil4 24390 |
. . . . . 6
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈
(CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷))) |
21 | 12, 18, 19, 20 | syl3anc 1369 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈
(CauFilu‘(metUnif‘𝐷)) ↔ 𝑐 ∈ (CauFil‘𝐷))) |
22 | 11, 21 | bitrd 278 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFil‘𝐷))) |
23 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
24 | 23 | iscmet 24353 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)) |
25 | 24 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅) |
26 | 13, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ CMetSp →
∀𝑐 ∈
(CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅) |
27 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘𝐹) =
(TopOpen‘𝐹) |
28 | 27, 4, 5 | xmstopn 23512 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ ∞MetSp →
(TopOpen‘𝐹) =
(MetOpen‘𝐷)) |
29 | 3, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ CMetSp →
(TopOpen‘𝐹) =
(MetOpen‘𝐷)) |
30 | 29 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ CMetSp →
((TopOpen‘𝐹) fLim
𝑐) = ((MetOpen‘𝐷) fLim 𝑐)) |
31 | 30 | neeq1d 3002 |
. . . . . . . . . 10
⊢ (𝐹 ∈ CMetSp →
(((TopOpen‘𝐹) fLim
𝑐) ≠ ∅ ↔
((MetOpen‘𝐷) fLim
𝑐) ≠
∅)) |
32 | 31 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝐹 ∈ CMetSp →
(∀𝑐 ∈
(CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅ ↔ ∀𝑐 ∈ (CauFil‘𝐷)((MetOpen‘𝐷) fLim 𝑐) ≠ ∅)) |
33 | 26, 32 | mpbird 256 |
. . . . . . . 8
⊢ (𝐹 ∈ CMetSp →
∀𝑐 ∈
(CauFil‘𝐷)((TopOpen‘𝐹) fLim 𝑐) ≠ ∅) |
34 | 33 | r19.21bi 3132 |
. . . . . . 7
⊢ ((𝐹 ∈ CMetSp ∧ 𝑐 ∈ (CauFil‘𝐷)) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅) |
35 | 34 | ex 412 |
. . . . . 6
⊢ (𝐹 ∈ CMetSp → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)) |
36 | 35 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)) |
37 | 36 | adantr 480 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFil‘𝐷) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)) |
38 | 22, 37 | sylbid 239 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) ∧ 𝑐 ∈ (Fil‘𝑋)) → (𝑐 ∈ (CauFilu‘𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)) |
39 | 38 | ralrimiva 3107 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → ∀𝑐 ∈ (Fil‘𝑋)(𝑐 ∈ (CauFilu‘𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅)) |
40 | 4, 6, 27 | iscusp2 23362 |
. 2
⊢ (𝐹 ∈ CUnifSp ↔ (𝐹 ∈ UnifSp ∧
∀𝑐 ∈
(Fil‘𝑋)(𝑐 ∈
(CauFilu‘𝑈) → ((TopOpen‘𝐹) fLim 𝑐) ≠ ∅))) |
41 | 8, 39, 40 | sylanbrc 582 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp) |