| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmepi | Structured version Visualization version GIF version | ||
| Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmepi.b | ⊢ 𝐵 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lnmepi | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod2 20946 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod) |
| 3 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | lnmepi.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑇) | |
| 5 | 3, 4 | lmhmf 20948 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 6 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 7 | simp3 1138 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵) | |
| 8 | dffo2 6779 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–onto→𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 9 | 6, 7, 8 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto→𝐵) |
| 10 | eqid 2730 | . . . . . . 7 ⊢ (LSubSp‘𝑇) = (LSubSp‘𝑇) | |
| 11 | 4, 10 | lssss 20849 | . . . . . 6 ⊢ (𝑎 ∈ (LSubSp‘𝑇) → 𝑎 ⊆ 𝐵) |
| 12 | foimacnv 6820 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | |
| 13 | 9, 11, 12 | syl2an 596 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 14 | 13 | oveq2d 7406 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s 𝑎)) |
| 15 | eqid 2730 | . . . . 5 ⊢ (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) | |
| 16 | eqid 2730 | . . . . 5 ⊢ (𝑆 ↾s (◡𝐹 “ 𝑎)) = (𝑆 ↾s (◡𝐹 “ 𝑎)) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑆) = (LSubSp‘𝑆) | |
| 18 | simpl2 1193 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM) | |
| 19 | 17, 10 | lmhmpreima 20962 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 20 | 19 | 3ad2antl1 1186 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 21 | 17, 16 | lnmlssfg 43076 | . . . . . 6 ⊢ ((𝑆 ∈ LNoeM ∧ (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 23 | simpl1 1192 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 24 | 15, 16, 17, 22, 20, 23 | lmhmfgima 43080 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) ∈ LFinGen) |
| 25 | 14, 24 | eqeltrrd 2830 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s 𝑎) ∈ LFinGen) |
| 26 | 25 | ralrimiva 3126 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen) |
| 27 | 10 | islnm 43073 | . 2 ⊢ (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen)) |
| 28 | 2, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 “ cima 5644 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 LModclmod 20773 LSubSpclss 20844 LMHom clmhm 20933 LFinGenclfig 43063 LNoeMclnm 43071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-sca 17243 df-vsca 17244 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lfig 43064 df-lnm 43072 |
| This theorem is referenced by: lnmlmic 43084 pwslnmlem1 43088 lnrfg 43115 |
| Copyright terms: Public domain | W3C validator |