Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmepi Structured version   Visualization version   GIF version

Theorem lnmepi 41827
Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
lnmepi.b 𝐵 = (Base‘𝑇)
Assertion
Ref Expression
lnmepi ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)

Proof of Theorem lnmepi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod2 20643 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
213ad2ant1 1134 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod)
3 eqid 2733 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
4 lnmepi.b . . . . . . . . 9 𝐵 = (Base‘𝑇)
53, 4lmhmf 20645 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵)
653ad2ant1 1134 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵)
7 simp3 1139 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵)
8 dffo2 6810 . . . . . . 7 (𝐹:(Base‘𝑆)–onto𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵))
96, 7, 8sylanbrc 584 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto𝐵)
10 eqid 2733 . . . . . . 7 (LSubSp‘𝑇) = (LSubSp‘𝑇)
114, 10lssss 20547 . . . . . 6 (𝑎 ∈ (LSubSp‘𝑇) → 𝑎𝐵)
12 foimacnv 6851 . . . . . 6 ((𝐹:(Base‘𝑆)–onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
139, 11, 12syl2an 597 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
1413oveq2d 7425 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s 𝑎))
15 eqid 2733 . . . . 5 (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s (𝐹 “ (𝐹𝑎)))
16 eqid 2733 . . . . 5 (𝑆s (𝐹𝑎)) = (𝑆s (𝐹𝑎))
17 eqid 2733 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
18 simpl2 1193 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM)
1917, 10lmhmpreima 20659 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
20193ad2antl1 1186 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
2117, 16lnmlssfg 41822 . . . . . 6 ((𝑆 ∈ LNoeM ∧ (𝐹𝑎) ∈ (LSubSp‘𝑆)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
2218, 20, 21syl2anc 585 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
23 simpl1 1192 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2415, 16, 17, 22, 20, 23lmhmfgima 41826 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) ∈ LFinGen)
2514, 24eqeltrrd 2835 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s 𝑎) ∈ LFinGen)
2625ralrimiva 3147 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen)
2710islnm 41819 . 2 (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen))
282, 26, 27sylanbrc 584 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3949  ccnv 5676  ran crn 5678  cima 5680  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  LModclmod 20471  LSubSpclss 20542   LMHom clmhm 20630  LFinGenclfig 41809  LNoeMclnm 41817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-sca 17213  df-vsca 17214  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-ghm 19090  df-mgp 19988  df-ur 20005  df-ring 20058  df-lmod 20473  df-lss 20543  df-lsp 20583  df-lmhm 20633  df-lfig 41810  df-lnm 41818
This theorem is referenced by:  lnmlmic  41830  pwslnmlem1  41834  lnrfg  41861
  Copyright terms: Public domain W3C validator