| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmepi | Structured version Visualization version GIF version | ||
| Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmepi.b | ⊢ 𝐵 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lnmepi | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod2 20964 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod) |
| 3 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | lnmepi.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑇) | |
| 5 | 3, 4 | lmhmf 20966 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 6 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 7 | simp3 1138 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵) | |
| 8 | dffo2 6739 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–onto→𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 9 | 6, 7, 8 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto→𝐵) |
| 10 | eqid 2731 | . . . . . . 7 ⊢ (LSubSp‘𝑇) = (LSubSp‘𝑇) | |
| 11 | 4, 10 | lssss 20867 | . . . . . 6 ⊢ (𝑎 ∈ (LSubSp‘𝑇) → 𝑎 ⊆ 𝐵) |
| 12 | foimacnv 6780 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | |
| 13 | 9, 11, 12 | syl2an 596 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 14 | 13 | oveq2d 7362 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s 𝑎)) |
| 15 | eqid 2731 | . . . . 5 ⊢ (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (𝑆 ↾s (◡𝐹 “ 𝑎)) = (𝑆 ↾s (◡𝐹 “ 𝑎)) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (LSubSp‘𝑆) = (LSubSp‘𝑆) | |
| 18 | simpl2 1193 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM) | |
| 19 | 17, 10 | lmhmpreima 20980 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 20 | 19 | 3ad2antl1 1186 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 21 | 17, 16 | lnmlssfg 43112 | . . . . . 6 ⊢ ((𝑆 ∈ LNoeM ∧ (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 23 | simpl1 1192 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 24 | 15, 16, 17, 22, 20, 23 | lmhmfgima 43116 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) ∈ LFinGen) |
| 25 | 14, 24 | eqeltrrd 2832 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s 𝑎) ∈ LFinGen) |
| 26 | 25 | ralrimiva 3124 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen) |
| 27 | 10 | islnm 43109 | . 2 ⊢ (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen)) |
| 28 | 2, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ◡ccnv 5615 ran crn 5617 “ cima 5619 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 LModclmod 20791 LSubSpclss 20862 LMHom clmhm 20951 LFinGenclfig 43099 LNoeMclnm 43107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-sca 17174 df-vsca 17175 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-ghm 19123 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lmhm 20954 df-lfig 43100 df-lnm 43108 |
| This theorem is referenced by: lnmlmic 43120 pwslnmlem1 43124 lnrfg 43151 |
| Copyright terms: Public domain | W3C validator |