| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmepi | Structured version Visualization version GIF version | ||
| Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmepi.b | ⊢ 𝐵 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lnmepi | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod2 20999 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod) |
| 3 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | lnmepi.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑇) | |
| 5 | 3, 4 | lmhmf 21001 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 6 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 7 | simp3 1138 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵) | |
| 8 | dffo2 6804 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–onto→𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 9 | 6, 7, 8 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto→𝐵) |
| 10 | eqid 2734 | . . . . . . 7 ⊢ (LSubSp‘𝑇) = (LSubSp‘𝑇) | |
| 11 | 4, 10 | lssss 20902 | . . . . . 6 ⊢ (𝑎 ∈ (LSubSp‘𝑇) → 𝑎 ⊆ 𝐵) |
| 12 | foimacnv 6845 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | |
| 13 | 9, 11, 12 | syl2an 596 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 14 | 13 | oveq2d 7429 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s 𝑎)) |
| 15 | eqid 2734 | . . . . 5 ⊢ (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) | |
| 16 | eqid 2734 | . . . . 5 ⊢ (𝑆 ↾s (◡𝐹 “ 𝑎)) = (𝑆 ↾s (◡𝐹 “ 𝑎)) | |
| 17 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑆) = (LSubSp‘𝑆) | |
| 18 | simpl2 1192 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM) | |
| 19 | 17, 10 | lmhmpreima 21015 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 20 | 19 | 3ad2antl1 1185 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 21 | 17, 16 | lnmlssfg 43055 | . . . . . 6 ⊢ ((𝑆 ∈ LNoeM ∧ (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 23 | simpl1 1191 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 24 | 15, 16, 17, 22, 20, 23 | lmhmfgima 43059 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) ∈ LFinGen) |
| 25 | 14, 24 | eqeltrrd 2834 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s 𝑎) ∈ LFinGen) |
| 26 | 25 | ralrimiva 3133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen) |
| 27 | 10 | islnm 43052 | . 2 ⊢ (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen)) |
| 28 | 2, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ◡ccnv 5664 ran crn 5666 “ cima 5668 ⟶wf 6537 –onto→wfo 6539 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 ↾s cress 17252 LModclmod 20826 LSubSpclss 20897 LMHom clmhm 20986 LFinGenclfig 43042 LNoeMclnm 43050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-sca 17289 df-vsca 17290 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-ghm 19200 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lmhm 20989 df-lfig 43043 df-lnm 43051 |
| This theorem is referenced by: lnmlmic 43063 pwslnmlem1 43067 lnrfg 43094 |
| Copyright terms: Public domain | W3C validator |