Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmepi Structured version   Visualization version   GIF version

Theorem lnmepi 40826
Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
lnmepi.b 𝐵 = (Base‘𝑇)
Assertion
Ref Expression
lnmepi ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)

Proof of Theorem lnmepi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod2 20209 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
213ad2ant1 1131 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod)
3 eqid 2738 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
4 lnmepi.b . . . . . . . . 9 𝐵 = (Base‘𝑇)
53, 4lmhmf 20211 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵)
653ad2ant1 1131 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵)
7 simp3 1136 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵)
8 dffo2 6676 . . . . . . 7 (𝐹:(Base‘𝑆)–onto𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵))
96, 7, 8sylanbrc 582 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto𝐵)
10 eqid 2738 . . . . . . 7 (LSubSp‘𝑇) = (LSubSp‘𝑇)
114, 10lssss 20113 . . . . . 6 (𝑎 ∈ (LSubSp‘𝑇) → 𝑎𝐵)
12 foimacnv 6717 . . . . . 6 ((𝐹:(Base‘𝑆)–onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
139, 11, 12syl2an 595 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
1413oveq2d 7271 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s 𝑎))
15 eqid 2738 . . . . 5 (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s (𝐹 “ (𝐹𝑎)))
16 eqid 2738 . . . . 5 (𝑆s (𝐹𝑎)) = (𝑆s (𝐹𝑎))
17 eqid 2738 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
18 simpl2 1190 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM)
1917, 10lmhmpreima 20225 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
20193ad2antl1 1183 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
2117, 16lnmlssfg 40821 . . . . . 6 ((𝑆 ∈ LNoeM ∧ (𝐹𝑎) ∈ (LSubSp‘𝑆)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
2218, 20, 21syl2anc 583 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
23 simpl1 1189 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2415, 16, 17, 22, 20, 23lmhmfgima 40825 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) ∈ LFinGen)
2514, 24eqeltrrd 2840 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s 𝑎) ∈ LFinGen)
2625ralrimiva 3107 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen)
2710islnm 40818 . 2 (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen))
282, 26, 27sylanbrc 582 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  ccnv 5579  ran crn 5581  cima 5583  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  LModclmod 20038  LSubSpclss 20108   LMHom clmhm 20196  LFinGenclfig 40808  LNoeMclnm 40816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lfig 40809  df-lnm 40817
This theorem is referenced by:  lnmlmic  40829  pwslnmlem1  40833  lnrfg  40860
  Copyright terms: Public domain W3C validator