| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmepi | Structured version Visualization version GIF version | ||
| Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| lnmepi.b | ⊢ 𝐵 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lnmepi | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod2 20968 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod) |
| 3 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | lnmepi.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑇) | |
| 5 | 3, 4 | lmhmf 20970 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 6 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵) |
| 7 | simp3 1138 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵) | |
| 8 | dffo2 6744 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–onto→𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 9 | 6, 7, 8 | sylanbrc 583 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto→𝐵) |
| 10 | eqid 2733 | . . . . . . 7 ⊢ (LSubSp‘𝑇) = (LSubSp‘𝑇) | |
| 11 | 4, 10 | lssss 20871 | . . . . . 6 ⊢ (𝑎 ∈ (LSubSp‘𝑇) → 𝑎 ⊆ 𝐵) |
| 12 | foimacnv 6785 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | |
| 13 | 9, 11, 12 | syl2an 596 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 14 | 13 | oveq2d 7368 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s 𝑎)) |
| 15 | eqid 2733 | . . . . 5 ⊢ (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) | |
| 16 | eqid 2733 | . . . . 5 ⊢ (𝑆 ↾s (◡𝐹 “ 𝑎)) = (𝑆 ↾s (◡𝐹 “ 𝑎)) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (LSubSp‘𝑆) = (LSubSp‘𝑆) | |
| 18 | simpl2 1193 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM) | |
| 19 | 17, 10 | lmhmpreima 20984 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 20 | 19 | 3ad2antl1 1186 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
| 21 | 17, 16 | lnmlssfg 43197 | . . . . . 6 ⊢ ((𝑆 ∈ LNoeM ∧ (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
| 23 | simpl1 1192 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 24 | 15, 16, 17, 22, 20, 23 | lmhmfgima 43201 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) ∈ LFinGen) |
| 25 | 14, 24 | eqeltrrd 2834 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s 𝑎) ∈ LFinGen) |
| 26 | 25 | ralrimiva 3125 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen) |
| 27 | 10 | islnm 43194 | . 2 ⊢ (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen)) |
| 28 | 2, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ◡ccnv 5618 ran crn 5620 “ cima 5622 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 LModclmod 20795 LSubSpclss 20866 LMHom clmhm 20955 LFinGenclfig 43184 LNoeMclnm 43192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-sca 17179 df-vsca 17180 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-ghm 19127 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lmhm 20958 df-lfig 43185 df-lnm 43193 |
| This theorem is referenced by: lnmlmic 43205 pwslnmlem1 43209 lnrfg 43236 |
| Copyright terms: Public domain | W3C validator |