Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlnmsplit Structured version   Visualization version   GIF version

Theorem lmhmlnmsplit 40031
Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmlnmsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)

Proof of Theorem lmhmlnmsplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 19798 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
213ad2ant1 1130 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LMod)
3 eqid 2798 . . . . . 6 (LSubSp‘𝑆) = (LSubSp‘𝑆)
4 eqid 2798 . . . . . 6 (𝑆s 𝑎) = (𝑆s 𝑎)
53, 4reslmhm 19817 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
653ad2antl1 1182 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
7 cnvresima 6054 . . . . . . . 8 ((𝐹𝑎) “ { 0 }) = ((𝐹 “ { 0 }) ∩ 𝑎)
8 lmhmfgsplit.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
98eqcomi 2807 . . . . . . . . 9 (𝐹 “ { 0 }) = 𝐾
109ineq1i 4135 . . . . . . . 8 ((𝐹 “ { 0 }) ∩ 𝑎) = (𝐾𝑎)
11 incom 4128 . . . . . . . 8 (𝐾𝑎) = (𝑎𝐾)
127, 10, 113eqtri 2825 . . . . . . 7 ((𝐹𝑎) “ { 0 }) = (𝑎𝐾)
1312oveq2i 7146 . . . . . 6 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s (𝑎𝐾))
14 vex 3444 . . . . . . . 8 𝑎 ∈ V
15 inss1 4155 . . . . . . . 8 (𝑎𝐾) ⊆ 𝑎
16 ressabs 16555 . . . . . . . 8 ((𝑎 ∈ V ∧ (𝑎𝐾) ⊆ 𝑎) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
1714, 15, 16mp2an 691 . . . . . . 7 ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾))
18 lmhmfgsplit.u . . . . . . . . 9 𝑈 = (𝑆s 𝐾)
1918oveq1i 7145 . . . . . . . 8 (𝑈s (𝑎𝐾)) = ((𝑆s 𝐾) ↾s (𝑎𝐾))
20 simpl1 1188 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
21 cnvexg 7611 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ V)
22 imaexg 7602 . . . . . . . . . . . 12 (𝐹 ∈ V → (𝐹 “ { 0 }) ∈ V)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 “ { 0 }) ∈ V)
248, 23eqeltrid 2894 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ V)
2520, 24syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ V)
26 inss2 4156 . . . . . . . . 9 (𝑎𝐾) ⊆ 𝐾
27 ressabs 16555 . . . . . . . . 9 ((𝐾 ∈ V ∧ (𝑎𝐾) ⊆ 𝐾) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2825, 26, 27sylancl 589 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2919, 28syl5eq 2845 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
3017, 29eqtr4id 2852 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑈s (𝑎𝐾)))
3113, 30syl5eq 2845 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = (𝑈s (𝑎𝐾)))
32 simpl2 1189 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑈 ∈ LNoeM)
332adantr 484 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑆 ∈ LMod)
34 simpr 488 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑎 ∈ (LSubSp‘𝑆))
35 lmhmfgsplit.z . . . . . . . . . 10 0 = (0g𝑇)
368, 35, 3lmhmkerlss 19816 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
3720, 36syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ (LSubSp‘𝑆))
383lssincl 19730 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑆) ∧ 𝐾 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
3933, 34, 37, 38syl3anc 1368 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
4026a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ⊆ 𝐾)
41 eqid 2798 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4218, 3, 41lsslss 19726 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4333, 37, 42syl2anc 587 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4439, 40, 43mpbir2and 712 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑈))
45 eqid 2798 . . . . . . 7 (𝑈s (𝑎𝐾)) = (𝑈s (𝑎𝐾))
4641, 45lnmlssfg 40024 . . . . . 6 ((𝑈 ∈ LNoeM ∧ (𝑎𝐾) ∈ (LSubSp‘𝑈)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4732, 44, 46syl2anc 587 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4831, 47eqeltrd 2890 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen)
49 incom 4128 . . . . . . . . 9 (ran 𝐹 ∩ ran (𝐹𝑎)) = (ran (𝐹𝑎) ∩ ran 𝐹)
50 resss 5843 . . . . . . . . . . 11 (𝐹𝑎) ⊆ 𝐹
51 rnss 5773 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ 𝐹 → ran (𝐹𝑎) ⊆ ran 𝐹)
5250, 51ax-mp 5 . . . . . . . . . 10 ran (𝐹𝑎) ⊆ ran 𝐹
53 df-ss 3898 . . . . . . . . . 10 (ran (𝐹𝑎) ⊆ ran 𝐹 ↔ (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎))
5452, 53mpbi 233 . . . . . . . . 9 (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎)
5549, 54eqtr2i 2822 . . . . . . . 8 ran (𝐹𝑎) = (ran 𝐹 ∩ ran (𝐹𝑎))
5655oveq2i 7146 . . . . . . 7 (𝑇s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎)))
57 lmhmfgsplit.v . . . . . . . . 9 𝑉 = (𝑇s ran 𝐹)
5857oveq1i 7145 . . . . . . . 8 (𝑉s ran (𝐹𝑎)) = ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎))
59 rnexg 7595 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ V)
60 resexg 5864 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹𝑎) ∈ V)
61 rnexg 7595 . . . . . . . . . 10 ((𝐹𝑎) ∈ V → ran (𝐹𝑎) ∈ V)
6260, 61syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran (𝐹𝑎) ∈ V)
63 ressress 16554 . . . . . . . . 9 ((ran 𝐹 ∈ V ∧ ran (𝐹𝑎) ∈ V) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6459, 62, 63syl2anc 587 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6558, 64syl5eq 2845 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑉s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6656, 65eqtr4id 2852 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
6720, 66syl 17 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
68 simpl3 1190 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑉 ∈ LNoeM)
69 lmhmrnlss 19815 . . . . . . . 8 ((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
706, 69syl 17 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
7152a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ⊆ ran 𝐹)
72 lmhmlmod2 19797 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7320, 72syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑇 ∈ LMod)
74 lmhmrnlss 19815 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
7520, 74syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran 𝐹 ∈ (LSubSp‘𝑇))
76 eqid 2798 . . . . . . . . 9 (LSubSp‘𝑇) = (LSubSp‘𝑇)
77 eqid 2798 . . . . . . . . 9 (LSubSp‘𝑉) = (LSubSp‘𝑉)
7857, 76, 77lsslss 19726 . . . . . . . 8 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
7973, 75, 78syl2anc 587 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
8070, 71, 79mpbir2and 712 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑉))
81 eqid 2798 . . . . . . 7 (𝑉s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎))
8277, 81lnmlssfg 40024 . . . . . 6 ((𝑉 ∈ LNoeM ∧ ran (𝐹𝑎) ∈ (LSubSp‘𝑉)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8368, 80, 82syl2anc 587 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8467, 83eqeltrd 2890 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) ∈ LFinGen)
85 eqid 2798 . . . . 5 ((𝐹𝑎) “ { 0 }) = ((𝐹𝑎) “ { 0 })
86 eqid 2798 . . . . 5 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 }))
87 eqid 2798 . . . . 5 (𝑇s ran (𝐹𝑎)) = (𝑇s ran (𝐹𝑎))
8835, 85, 86, 87lmhmfgsplit 40030 . . . 4 (((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) ∧ ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen ∧ (𝑇s ran (𝐹𝑎)) ∈ LFinGen) → (𝑆s 𝑎) ∈ LFinGen)
896, 48, 84, 88syl3anc 1368 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑆s 𝑎) ∈ LFinGen)
9089ralrimiva 3149 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen)
913islnm 40021 . 2 (𝑆 ∈ LNoeM ↔ (𝑆 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen))
922, 90, 91sylanbrc 586 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cin 3880  wss 3881  {csn 4525  ccnv 5518  ran crn 5520  cres 5521  cima 5522  cfv 6324  (class class class)co 7135  s cress 16476  0gc0g 16705  LModclmod 19627  LSubSpclss 19696   LMHom clmhm 19784  LFinGenclfig 40011  LNoeMclnm 40019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lfig 40012  df-lnm 40020
This theorem is referenced by:  pwslnmlem2  40037
  Copyright terms: Public domain W3C validator