Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlnmsplit Structured version   Visualization version   GIF version

Theorem lmhmlnmsplit 41400
Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmlnmsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)

Proof of Theorem lmhmlnmsplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 20494 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
213ad2ant1 1133 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LMod)
3 eqid 2736 . . . . . 6 (LSubSp‘𝑆) = (LSubSp‘𝑆)
4 eqid 2736 . . . . . 6 (𝑆s 𝑎) = (𝑆s 𝑎)
53, 4reslmhm 20513 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
653ad2antl1 1185 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
7 cnvresima 6182 . . . . . . . 8 ((𝐹𝑎) “ { 0 }) = ((𝐹 “ { 0 }) ∩ 𝑎)
8 lmhmfgsplit.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
98eqcomi 2745 . . . . . . . . 9 (𝐹 “ { 0 }) = 𝐾
109ineq1i 4168 . . . . . . . 8 ((𝐹 “ { 0 }) ∩ 𝑎) = (𝐾𝑎)
11 incom 4161 . . . . . . . 8 (𝐾𝑎) = (𝑎𝐾)
127, 10, 113eqtri 2768 . . . . . . 7 ((𝐹𝑎) “ { 0 }) = (𝑎𝐾)
1312oveq2i 7368 . . . . . 6 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s (𝑎𝐾))
14 vex 3449 . . . . . . . 8 𝑎 ∈ V
15 inss1 4188 . . . . . . . 8 (𝑎𝐾) ⊆ 𝑎
16 ressabs 17130 . . . . . . . 8 ((𝑎 ∈ V ∧ (𝑎𝐾) ⊆ 𝑎) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
1714, 15, 16mp2an 690 . . . . . . 7 ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾))
18 lmhmfgsplit.u . . . . . . . . 9 𝑈 = (𝑆s 𝐾)
1918oveq1i 7367 . . . . . . . 8 (𝑈s (𝑎𝐾)) = ((𝑆s 𝐾) ↾s (𝑎𝐾))
20 simpl1 1191 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
21 cnvexg 7861 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ V)
22 imaexg 7852 . . . . . . . . . . . 12 (𝐹 ∈ V → (𝐹 “ { 0 }) ∈ V)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 “ { 0 }) ∈ V)
248, 23eqeltrid 2842 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ V)
2520, 24syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ V)
26 inss2 4189 . . . . . . . . 9 (𝑎𝐾) ⊆ 𝐾
27 ressabs 17130 . . . . . . . . 9 ((𝐾 ∈ V ∧ (𝑎𝐾) ⊆ 𝐾) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2825, 26, 27sylancl 586 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2919, 28eqtrid 2788 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
3017, 29eqtr4id 2795 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑈s (𝑎𝐾)))
3113, 30eqtrid 2788 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = (𝑈s (𝑎𝐾)))
32 simpl2 1192 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑈 ∈ LNoeM)
332adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑆 ∈ LMod)
34 simpr 485 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑎 ∈ (LSubSp‘𝑆))
35 lmhmfgsplit.z . . . . . . . . . 10 0 = (0g𝑇)
368, 35, 3lmhmkerlss 20512 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
3720, 36syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ (LSubSp‘𝑆))
383lssincl 20426 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑆) ∧ 𝐾 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
3933, 34, 37, 38syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
4026a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ⊆ 𝐾)
41 eqid 2736 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4218, 3, 41lsslss 20422 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4333, 37, 42syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4439, 40, 43mpbir2and 711 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑈))
45 eqid 2736 . . . . . . 7 (𝑈s (𝑎𝐾)) = (𝑈s (𝑎𝐾))
4641, 45lnmlssfg 41393 . . . . . 6 ((𝑈 ∈ LNoeM ∧ (𝑎𝐾) ∈ (LSubSp‘𝑈)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4732, 44, 46syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4831, 47eqeltrd 2838 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen)
49 incom 4161 . . . . . . . . 9 (ran 𝐹 ∩ ran (𝐹𝑎)) = (ran (𝐹𝑎) ∩ ran 𝐹)
50 resss 5962 . . . . . . . . . . 11 (𝐹𝑎) ⊆ 𝐹
51 rnss 5894 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ 𝐹 → ran (𝐹𝑎) ⊆ ran 𝐹)
5250, 51ax-mp 5 . . . . . . . . . 10 ran (𝐹𝑎) ⊆ ran 𝐹
53 df-ss 3927 . . . . . . . . . 10 (ran (𝐹𝑎) ⊆ ran 𝐹 ↔ (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎))
5452, 53mpbi 229 . . . . . . . . 9 (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎)
5549, 54eqtr2i 2765 . . . . . . . 8 ran (𝐹𝑎) = (ran 𝐹 ∩ ran (𝐹𝑎))
5655oveq2i 7368 . . . . . . 7 (𝑇s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎)))
57 lmhmfgsplit.v . . . . . . . . 9 𝑉 = (𝑇s ran 𝐹)
5857oveq1i 7367 . . . . . . . 8 (𝑉s ran (𝐹𝑎)) = ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎))
59 rnexg 7841 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ V)
60 resexg 5983 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹𝑎) ∈ V)
61 rnexg 7841 . . . . . . . . . 10 ((𝐹𝑎) ∈ V → ran (𝐹𝑎) ∈ V)
6260, 61syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran (𝐹𝑎) ∈ V)
63 ressress 17129 . . . . . . . . 9 ((ran 𝐹 ∈ V ∧ ran (𝐹𝑎) ∈ V) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6459, 62, 63syl2anc 584 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6558, 64eqtrid 2788 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑉s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6656, 65eqtr4id 2795 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
6720, 66syl 17 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
68 simpl3 1193 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑉 ∈ LNoeM)
69 lmhmrnlss 20511 . . . . . . . 8 ((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
706, 69syl 17 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
7152a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ⊆ ran 𝐹)
72 lmhmlmod2 20493 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7320, 72syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑇 ∈ LMod)
74 lmhmrnlss 20511 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
7520, 74syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran 𝐹 ∈ (LSubSp‘𝑇))
76 eqid 2736 . . . . . . . . 9 (LSubSp‘𝑇) = (LSubSp‘𝑇)
77 eqid 2736 . . . . . . . . 9 (LSubSp‘𝑉) = (LSubSp‘𝑉)
7857, 76, 77lsslss 20422 . . . . . . . 8 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
7973, 75, 78syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
8070, 71, 79mpbir2and 711 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑉))
81 eqid 2736 . . . . . . 7 (𝑉s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎))
8277, 81lnmlssfg 41393 . . . . . 6 ((𝑉 ∈ LNoeM ∧ ran (𝐹𝑎) ∈ (LSubSp‘𝑉)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8368, 80, 82syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8467, 83eqeltrd 2838 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) ∈ LFinGen)
85 eqid 2736 . . . . 5 ((𝐹𝑎) “ { 0 }) = ((𝐹𝑎) “ { 0 })
86 eqid 2736 . . . . 5 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 }))
87 eqid 2736 . . . . 5 (𝑇s ran (𝐹𝑎)) = (𝑇s ran (𝐹𝑎))
8835, 85, 86, 87lmhmfgsplit 41399 . . . 4 (((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) ∧ ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen ∧ (𝑇s ran (𝐹𝑎)) ∈ LFinGen) → (𝑆s 𝑎) ∈ LFinGen)
896, 48, 84, 88syl3anc 1371 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑆s 𝑎) ∈ LFinGen)
9089ralrimiva 3143 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen)
913islnm 41390 . 2 (𝑆 ∈ LNoeM ↔ (𝑆 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen))
922, 90, 91sylanbrc 583 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cin 3909  wss 3910  {csn 4586  ccnv 5632  ran crn 5634  cres 5635  cima 5636  cfv 6496  (class class class)co 7357  s cress 17112  0gc0g 17321  LModclmod 20322  LSubSpclss 20392   LMHom clmhm 20480  LFinGenclfig 41380  LNoeMclnm 41388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lfig 41381  df-lnm 41389
This theorem is referenced by:  pwslnmlem2  41406
  Copyright terms: Public domain W3C validator