Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlnmsplit Structured version   Visualization version   GIF version

Theorem lmhmlnmsplit 40909
Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmlnmsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)

Proof of Theorem lmhmlnmsplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 20293 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
213ad2ant1 1132 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LMod)
3 eqid 2740 . . . . . 6 (LSubSp‘𝑆) = (LSubSp‘𝑆)
4 eqid 2740 . . . . . 6 (𝑆s 𝑎) = (𝑆s 𝑎)
53, 4reslmhm 20312 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
653ad2antl1 1184 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
7 cnvresima 6132 . . . . . . . 8 ((𝐹𝑎) “ { 0 }) = ((𝐹 “ { 0 }) ∩ 𝑎)
8 lmhmfgsplit.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
98eqcomi 2749 . . . . . . . . 9 (𝐹 “ { 0 }) = 𝐾
109ineq1i 4148 . . . . . . . 8 ((𝐹 “ { 0 }) ∩ 𝑎) = (𝐾𝑎)
11 incom 4140 . . . . . . . 8 (𝐾𝑎) = (𝑎𝐾)
127, 10, 113eqtri 2772 . . . . . . 7 ((𝐹𝑎) “ { 0 }) = (𝑎𝐾)
1312oveq2i 7282 . . . . . 6 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s (𝑎𝐾))
14 vex 3435 . . . . . . . 8 𝑎 ∈ V
15 inss1 4168 . . . . . . . 8 (𝑎𝐾) ⊆ 𝑎
16 ressabs 16957 . . . . . . . 8 ((𝑎 ∈ V ∧ (𝑎𝐾) ⊆ 𝑎) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
1714, 15, 16mp2an 689 . . . . . . 7 ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾))
18 lmhmfgsplit.u . . . . . . . . 9 𝑈 = (𝑆s 𝐾)
1918oveq1i 7281 . . . . . . . 8 (𝑈s (𝑎𝐾)) = ((𝑆s 𝐾) ↾s (𝑎𝐾))
20 simpl1 1190 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
21 cnvexg 7765 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ V)
22 imaexg 7756 . . . . . . . . . . . 12 (𝐹 ∈ V → (𝐹 “ { 0 }) ∈ V)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 “ { 0 }) ∈ V)
248, 23eqeltrid 2845 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ V)
2520, 24syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ V)
26 inss2 4169 . . . . . . . . 9 (𝑎𝐾) ⊆ 𝐾
27 ressabs 16957 . . . . . . . . 9 ((𝐾 ∈ V ∧ (𝑎𝐾) ⊆ 𝐾) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2825, 26, 27sylancl 586 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2919, 28eqtrid 2792 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
3017, 29eqtr4id 2799 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑈s (𝑎𝐾)))
3113, 30eqtrid 2792 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = (𝑈s (𝑎𝐾)))
32 simpl2 1191 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑈 ∈ LNoeM)
332adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑆 ∈ LMod)
34 simpr 485 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑎 ∈ (LSubSp‘𝑆))
35 lmhmfgsplit.z . . . . . . . . . 10 0 = (0g𝑇)
368, 35, 3lmhmkerlss 20311 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
3720, 36syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ (LSubSp‘𝑆))
383lssincl 20225 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑆) ∧ 𝐾 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
3933, 34, 37, 38syl3anc 1370 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
4026a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ⊆ 𝐾)
41 eqid 2740 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4218, 3, 41lsslss 20221 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4333, 37, 42syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4439, 40, 43mpbir2and 710 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑈))
45 eqid 2740 . . . . . . 7 (𝑈s (𝑎𝐾)) = (𝑈s (𝑎𝐾))
4641, 45lnmlssfg 40902 . . . . . 6 ((𝑈 ∈ LNoeM ∧ (𝑎𝐾) ∈ (LSubSp‘𝑈)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4732, 44, 46syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4831, 47eqeltrd 2841 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen)
49 incom 4140 . . . . . . . . 9 (ran 𝐹 ∩ ran (𝐹𝑎)) = (ran (𝐹𝑎) ∩ ran 𝐹)
50 resss 5915 . . . . . . . . . . 11 (𝐹𝑎) ⊆ 𝐹
51 rnss 5847 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ 𝐹 → ran (𝐹𝑎) ⊆ ran 𝐹)
5250, 51ax-mp 5 . . . . . . . . . 10 ran (𝐹𝑎) ⊆ ran 𝐹
53 df-ss 3909 . . . . . . . . . 10 (ran (𝐹𝑎) ⊆ ran 𝐹 ↔ (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎))
5452, 53mpbi 229 . . . . . . . . 9 (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎)
5549, 54eqtr2i 2769 . . . . . . . 8 ran (𝐹𝑎) = (ran 𝐹 ∩ ran (𝐹𝑎))
5655oveq2i 7282 . . . . . . 7 (𝑇s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎)))
57 lmhmfgsplit.v . . . . . . . . 9 𝑉 = (𝑇s ran 𝐹)
5857oveq1i 7281 . . . . . . . 8 (𝑉s ran (𝐹𝑎)) = ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎))
59 rnexg 7745 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ V)
60 resexg 5936 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹𝑎) ∈ V)
61 rnexg 7745 . . . . . . . . . 10 ((𝐹𝑎) ∈ V → ran (𝐹𝑎) ∈ V)
6260, 61syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran (𝐹𝑎) ∈ V)
63 ressress 16956 . . . . . . . . 9 ((ran 𝐹 ∈ V ∧ ran (𝐹𝑎) ∈ V) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6459, 62, 63syl2anc 584 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6558, 64eqtrid 2792 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑉s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
6656, 65eqtr4id 2799 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
6720, 66syl 17 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
68 simpl3 1192 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑉 ∈ LNoeM)
69 lmhmrnlss 20310 . . . . . . . 8 ((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
706, 69syl 17 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
7152a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ⊆ ran 𝐹)
72 lmhmlmod2 20292 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7320, 72syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑇 ∈ LMod)
74 lmhmrnlss 20310 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
7520, 74syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran 𝐹 ∈ (LSubSp‘𝑇))
76 eqid 2740 . . . . . . . . 9 (LSubSp‘𝑇) = (LSubSp‘𝑇)
77 eqid 2740 . . . . . . . . 9 (LSubSp‘𝑉) = (LSubSp‘𝑉)
7857, 76, 77lsslss 20221 . . . . . . . 8 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
7973, 75, 78syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
8070, 71, 79mpbir2and 710 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑉))
81 eqid 2740 . . . . . . 7 (𝑉s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎))
8277, 81lnmlssfg 40902 . . . . . 6 ((𝑉 ∈ LNoeM ∧ ran (𝐹𝑎) ∈ (LSubSp‘𝑉)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8368, 80, 82syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8467, 83eqeltrd 2841 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) ∈ LFinGen)
85 eqid 2740 . . . . 5 ((𝐹𝑎) “ { 0 }) = ((𝐹𝑎) “ { 0 })
86 eqid 2740 . . . . 5 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 }))
87 eqid 2740 . . . . 5 (𝑇s ran (𝐹𝑎)) = (𝑇s ran (𝐹𝑎))
8835, 85, 86, 87lmhmfgsplit 40908 . . . 4 (((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) ∧ ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen ∧ (𝑇s ran (𝐹𝑎)) ∈ LFinGen) → (𝑆s 𝑎) ∈ LFinGen)
896, 48, 84, 88syl3anc 1370 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑆s 𝑎) ∈ LFinGen)
9089ralrimiva 3110 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen)
913islnm 40899 . 2 (𝑆 ∈ LNoeM ↔ (𝑆 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen))
922, 90, 91sylanbrc 583 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  cin 3891  wss 3892  {csn 4567  ccnv 5589  ran crn 5591  cres 5592  cima 5593  cfv 6432  (class class class)co 7271  s cress 16939  0gc0g 17148  LModclmod 20121  LSubSpclss 20191   LMHom clmhm 20279  LFinGenclfig 40889  LNoeMclnm 40897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-sca 16976  df-vsca 16977  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-ghm 18830  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lmhm 20282  df-lfig 40890  df-lnm 40898
This theorem is referenced by:  pwslnmlem2  40915
  Copyright terms: Public domain W3C validator