Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islnoppd | Structured version Visualization version GIF version |
Description: Deduce that 𝐴 and 𝐵 lie on opposite sides of line 𝐿. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
islnoppd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
islnoppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
islnoppd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
islnoppd.1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
islnoppd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
islnoppd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
Ref | Expression |
---|---|
islnoppd | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islnoppd.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | |
2 | islnoppd.2 | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | |
3 | islnoppd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
4 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) | |
5 | 4 | eleq1d 2822 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
6 | islnoppd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
7 | 3, 5, 6 | rspcedvd 3540 | . . 3 ⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
8 | 1, 2, 7 | jca31 518 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
9 | hpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
10 | hpg.d | . . 3 ⊢ − = (dist‘𝐺) | |
11 | hpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
12 | hpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
13 | islnoppd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | islnoppd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
15 | 9, 10, 11, 12, 13, 14 | islnopp 26830 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
16 | 8, 15 | mpbird 260 | 1 ⊢ (𝜑 → 𝐴𝑂𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ∖ cdif 3863 class class class wbr 5053 {copab 5115 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 distcds 16811 Itvcitv 26527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: opphllem2 26839 opphllem4 26841 outpasch 26846 lmiopp 26893 |
Copyright terms: Public domain | W3C validator |