Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islnoppd | Structured version Visualization version GIF version |
Description: Deduce that 𝐴 and 𝐵 lie on opposite sides of line 𝐿. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
islnoppd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
islnoppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
islnoppd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
islnoppd.1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
islnoppd.2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
islnoppd.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
Ref | Expression |
---|---|
islnoppd | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islnoppd.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | |
2 | islnoppd.2 | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | |
3 | islnoppd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
4 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
6 | islnoppd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
7 | 3, 5, 6 | rspcedvd 3563 | . . 3 ⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
8 | 1, 2, 7 | jca31 515 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
9 | hpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
10 | hpg.d | . . 3 ⊢ − = (dist‘𝐺) | |
11 | hpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
12 | hpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
13 | islnoppd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | islnoppd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
15 | 9, 10, 11, 12, 13, 14 | islnopp 27100 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
16 | 8, 15 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴𝑂𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∖ cdif 3884 class class class wbr 5074 {copab 5136 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 Itvcitv 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: opphllem2 27109 opphllem4 27111 outpasch 27116 lmiopp 27163 |
Copyright terms: Public domain | W3C validator |