Step | Hyp | Ref
| Expression |
1 | | islnopp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
2 | | islnopp.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
3 | | eleq1 2847 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝑃 ∖ 𝐷) ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) |
4 | 3 | anbi1d 623 |
. . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) |
5 | | id 22 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → 𝑢 = 𝐴) |
6 | 5 | oveq1d 6937 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣)) |
7 | 6 | eleq2d 2845 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣))) |
8 | 7 | rexbidv 3237 |
. . . . 5
⊢ (𝑢 = 𝐴 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣))) |
9 | 4, 8 | anbi12d 624 |
. . . 4
⊢ (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)))) |
10 | | eleq1 2847 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑣 ∈ (𝑃 ∖ 𝐷) ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) |
11 | 10 | anbi2d 622 |
. . . . 5
⊢ (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) |
12 | | oveq2 6930 |
. . . . . . 7
⊢ (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵)) |
13 | 12 | eleq2d 2845 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵))) |
14 | 13 | rexbidv 3237 |
. . . . 5
⊢ (𝑣 = 𝐵 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
15 | 11, 14 | anbi12d 624 |
. . . 4
⊢ (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
16 | | hpg.o |
. . . . 5
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
17 | | simpl 476 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) |
18 | | eqidd 2779 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑃 ∖ 𝐷) = (𝑃 ∖ 𝐷)) |
19 | 17, 18 | eleq12d 2853 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑢 ∈ (𝑃 ∖ 𝐷))) |
20 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) |
21 | 20, 18 | eleq12d 2853 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑣 ∈ (𝑃 ∖ 𝐷))) |
22 | 19, 21 | anbi12d 624 |
. . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) |
23 | | oveq12 6931 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣)) |
24 | 23 | eleq2d 2845 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣))) |
25 | 24 | rexbidv 3237 |
. . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))) |
26 | 22, 25 | anbi12d 624 |
. . . . . 6
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)))) |
27 | 26 | cbvopabv 4958 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} |
28 | 16, 27 | eqtri 2802 |
. . . 4
⊢ 𝑂 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} |
29 | 9, 15, 28 | brabg 5231 |
. . 3
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
30 | 1, 2, 29 | syl2anc 579 |
. 2
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
31 | 1 | biantrurd 528 |
. . . . 5
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷))) |
32 | | eldif 3802 |
. . . . 5
⊢ (𝐴 ∈ (𝑃 ∖ 𝐷) ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷)) |
33 | 31, 32 | syl6bbr 281 |
. . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) |
34 | 2 | biantrurd 528 |
. . . . 5
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷))) |
35 | | eldif 3802 |
. . . . 5
⊢ (𝐵 ∈ (𝑃 ∖ 𝐷) ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷)) |
36 | 34, 35 | syl6bbr 281 |
. . . 4
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) |
37 | 33, 36 | anbi12d 624 |
. . 3
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) |
38 | 37 | anbi1d 623 |
. 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
39 | 30, 38 | bitr4d 274 |
1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |