MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islnopp Structured version   Visualization version   GIF version

Theorem islnopp 28718
Description: The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
islnopp.a (𝜑𝐴𝑃)
islnopp.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islnopp (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐷(𝑡)   𝑃(𝑡)   𝐺(𝑡,𝑎,𝑏)   𝐼(𝑡)   (𝑡,𝑎,𝑏)   𝑂(𝑡,𝑎,𝑏)

Proof of Theorem islnopp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnopp.a . . 3 (𝜑𝐴𝑃)
2 islnopp.b . . 3 (𝜑𝐵𝑃)
3 eleq1 2821 . . . . . 6 (𝑢 = 𝐴 → (𝑢 ∈ (𝑃𝐷) ↔ 𝐴 ∈ (𝑃𝐷)))
43anbi1d 631 . . . . 5 (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
5 oveq1 7359 . . . . . . 7 (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣))
65eleq2d 2819 . . . . . 6 (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣)))
76rexbidv 3157 . . . . 5 (𝑢 = 𝐴 → (∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)))
84, 7anbi12d 632 . . . 4 (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣))))
9 eleq1 2821 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ∈ (𝑃𝐷) ↔ 𝐵 ∈ (𝑃𝐷)))
109anbi2d 630 . . . . 5 (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
11 oveq2 7360 . . . . . . 7 (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵))
1211eleq2d 2819 . . . . . 6 (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵)))
1312rexbidv 3157 . . . . 5 (𝑣 = 𝐵 → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
1410, 13anbi12d 632 . . . 4 (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
15 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
16 simpl 482 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
1716eleq1d 2818 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑢 ∈ (𝑃𝐷)))
18 simpr 484 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1918eleq1d 2818 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑣 ∈ (𝑃𝐷)))
2017, 19anbi12d 632 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
21 oveq12 7361 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
2221eleq2d 2819 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣)))
2322rexbidv 3157 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)))
2420, 23anbi12d 632 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))))
2524cbvopabv 5166 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
2615, 25eqtri 2756 . . . 4 𝑂 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
278, 14, 26brabg 5482 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
281, 2, 27syl2anc 584 . 2 (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
291biantrurd 532 . . . . 5 (𝜑 → (¬ 𝐴𝐷 ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷)))
30 eldif 3908 . . . . 5 (𝐴 ∈ (𝑃𝐷) ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷))
3129, 30bitr4di 289 . . . 4 (𝜑 → (¬ 𝐴𝐷𝐴 ∈ (𝑃𝐷)))
322biantrurd 532 . . . . 5 (𝜑 → (¬ 𝐵𝐷 ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷)))
33 eldif 3908 . . . . 5 (𝐵 ∈ (𝑃𝐷) ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷))
3432, 33bitr4di 289 . . . 4 (𝜑 → (¬ 𝐵𝐷𝐵 ∈ (𝑃𝐷)))
3531, 34anbi12d 632 . . 3 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
3635anbi1d 631 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
3728, 36bitr4d 282 1 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  cdif 3895   class class class wbr 5093  {copab 5155  cfv 6486  (class class class)co 7352  Basecbs 17122  distcds 17172  Itvcitv 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by:  islnoppd  28719  oppne1  28720  oppne2  28721  oppne3  28722  oppcom  28723  oppnid  28725  opphllem1  28726  opphllem3  28728  opphllem5  28730  opphllem6  28731  oppperpex  28732  outpasch  28734  lnopp2hpgb  28742  hpgerlem  28744  colopp  28748  colhp  28749  trgcopyeulem  28784
  Copyright terms: Public domain W3C validator