| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | islnopp.a | . . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 2 |  | islnopp.b | . . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 3 |  | eleq1 2829 | . . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝑃 ∖ 𝐷) ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) | 
| 4 | 3 | anbi1d 631 | . . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) | 
| 5 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣)) | 
| 6 | 5 | eleq2d 2827 | . . . . . 6
⊢ (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣))) | 
| 7 | 6 | rexbidv 3179 | . . . . 5
⊢ (𝑢 = 𝐴 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣))) | 
| 8 | 4, 7 | anbi12d 632 | . . . 4
⊢ (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)))) | 
| 9 |  | eleq1 2829 | . . . . . 6
⊢ (𝑣 = 𝐵 → (𝑣 ∈ (𝑃 ∖ 𝐷) ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) | 
| 10 | 9 | anbi2d 630 | . . . . 5
⊢ (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) | 
| 11 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵)) | 
| 12 | 11 | eleq2d 2827 | . . . . . 6
⊢ (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵))) | 
| 13 | 12 | rexbidv 3179 | . . . . 5
⊢ (𝑣 = 𝐵 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) | 
| 14 | 10, 13 | anbi12d 632 | . . . 4
⊢ (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 15 |  | hpg.o | . . . . 5
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| 16 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | 
| 17 | 16 | eleq1d 2826 | . . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑢 ∈ (𝑃 ∖ 𝐷))) | 
| 18 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | 
| 19 | 18 | eleq1d 2826 | . . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑣 ∈ (𝑃 ∖ 𝐷))) | 
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) | 
| 21 |  | oveq12 7440 | . . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣)) | 
| 22 | 21 | eleq2d 2827 | . . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣))) | 
| 23 | 22 | rexbidv 3179 | . . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))) | 
| 24 | 20, 23 | anbi12d 632 | . . . . . 6
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)))) | 
| 25 | 24 | cbvopabv 5216 | . . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} | 
| 26 | 15, 25 | eqtri 2765 | . . . 4
⊢ 𝑂 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} | 
| 27 | 8, 14, 26 | brabg 5544 | . . 3
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 28 | 1, 2, 27 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 29 | 1 | biantrurd 532 | . . . . 5
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷))) | 
| 30 |  | eldif 3961 | . . . . 5
⊢ (𝐴 ∈ (𝑃 ∖ 𝐷) ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷)) | 
| 31 | 29, 30 | bitr4di 289 | . . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) | 
| 32 | 2 | biantrurd 532 | . . . . 5
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷))) | 
| 33 |  | eldif 3961 | . . . . 5
⊢ (𝐵 ∈ (𝑃 ∖ 𝐷) ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷)) | 
| 34 | 32, 33 | bitr4di 289 | . . . 4
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) | 
| 35 | 31, 34 | anbi12d 632 | . . 3
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) | 
| 36 | 35 | anbi1d 631 | . 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 37 | 28, 36 | bitr4d 282 | 1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |