MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islnopp Structured version   Visualization version   GIF version

Theorem islnopp 27100
Description: The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
islnopp.a (𝜑𝐴𝑃)
islnopp.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islnopp (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐷(𝑡)   𝑃(𝑡)   𝐺(𝑡,𝑎,𝑏)   𝐼(𝑡)   (𝑡,𝑎,𝑏)   𝑂(𝑡,𝑎,𝑏)

Proof of Theorem islnopp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnopp.a . . 3 (𝜑𝐴𝑃)
2 islnopp.b . . 3 (𝜑𝐵𝑃)
3 eleq1 2826 . . . . . 6 (𝑢 = 𝐴 → (𝑢 ∈ (𝑃𝐷) ↔ 𝐴 ∈ (𝑃𝐷)))
43anbi1d 630 . . . . 5 (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
5 oveq1 7282 . . . . . . 7 (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣))
65eleq2d 2824 . . . . . 6 (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣)))
76rexbidv 3226 . . . . 5 (𝑢 = 𝐴 → (∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)))
84, 7anbi12d 631 . . . 4 (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣))))
9 eleq1 2826 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ∈ (𝑃𝐷) ↔ 𝐵 ∈ (𝑃𝐷)))
109anbi2d 629 . . . . 5 (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
11 oveq2 7283 . . . . . . 7 (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵))
1211eleq2d 2824 . . . . . 6 (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵)))
1312rexbidv 3226 . . . . 5 (𝑣 = 𝐵 → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
1410, 13anbi12d 631 . . . 4 (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
15 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
16 simpl 483 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
1716eleq1d 2823 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑢 ∈ (𝑃𝐷)))
18 simpr 485 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1918eleq1d 2823 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑣 ∈ (𝑃𝐷)))
2017, 19anbi12d 631 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
21 oveq12 7284 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
2221eleq2d 2824 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣)))
2322rexbidv 3226 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)))
2420, 23anbi12d 631 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))))
2524cbvopabv 5147 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
2615, 25eqtri 2766 . . . 4 𝑂 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
278, 14, 26brabg 5452 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
281, 2, 27syl2anc 584 . 2 (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
291biantrurd 533 . . . . 5 (𝜑 → (¬ 𝐴𝐷 ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷)))
30 eldif 3897 . . . . 5 (𝐴 ∈ (𝑃𝐷) ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷))
3129, 30bitr4di 289 . . . 4 (𝜑 → (¬ 𝐴𝐷𝐴 ∈ (𝑃𝐷)))
322biantrurd 533 . . . . 5 (𝜑 → (¬ 𝐵𝐷 ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷)))
33 eldif 3897 . . . . 5 (𝐵 ∈ (𝑃𝐷) ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷))
3432, 33bitr4di 289 . . . 4 (𝜑 → (¬ 𝐵𝐷𝐵 ∈ (𝑃𝐷)))
3531, 34anbi12d 631 . . 3 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
3635anbi1d 630 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
3728, 36bitr4d 281 1 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884   class class class wbr 5074  {copab 5136  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  islnoppd  27101  oppne1  27102  oppne2  27103  oppne3  27104  oppcom  27105  oppnid  27107  opphllem1  27108  opphllem3  27110  opphllem5  27112  opphllem6  27113  oppperpex  27114  outpasch  27116  lnopp2hpgb  27124  hpgerlem  27126  colopp  27130  colhp  27131  trgcopyeulem  27166
  Copyright terms: Public domain W3C validator