Step | Hyp | Ref
| Expression |
1 | | islnopp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
2 | | islnopp.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
3 | | eleq1 2826 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝑃 ∖ 𝐷) ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) |
4 | 3 | anbi1d 629 |
. . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) |
5 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣)) |
6 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣))) |
7 | 6 | rexbidv 3225 |
. . . . 5
⊢ (𝑢 = 𝐴 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣))) |
8 | 4, 7 | anbi12d 630 |
. . . 4
⊢ (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)))) |
9 | | eleq1 2826 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑣 ∈ (𝑃 ∖ 𝐷) ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) |
10 | 9 | anbi2d 628 |
. . . . 5
⊢ (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) |
11 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵)) |
12 | 11 | eleq2d 2824 |
. . . . . 6
⊢ (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵))) |
13 | 12 | rexbidv 3225 |
. . . . 5
⊢ (𝑣 = 𝐵 → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
14 | 10, 13 | anbi12d 630 |
. . . 4
⊢ (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
15 | | hpg.o |
. . . . 5
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
16 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) |
17 | 16 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ 𝐷) ↔ 𝑢 ∈ (𝑃 ∖ 𝐷))) |
18 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) |
19 | 18 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ 𝐷) ↔ 𝑣 ∈ (𝑃 ∖ 𝐷))) |
20 | 17, 19 | anbi12d 630 |
. . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ↔ (𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)))) |
21 | | oveq12 7264 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣)) |
22 | 21 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣))) |
23 | 22 | rexbidv 3225 |
. . . . . . 7
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))) |
24 | 20, 23 | anbi12d 630 |
. . . . . 6
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣)))) |
25 | 24 | cbvopabv 5143 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} |
26 | 15, 25 | eqtri 2766 |
. . . 4
⊢ 𝑂 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ 𝐷) ∧ 𝑣 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑢𝐼𝑣))} |
27 | 8, 14, 26 | brabg 5445 |
. . 3
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
28 | 1, 2, 27 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
29 | 1 | biantrurd 532 |
. . . . 5
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷))) |
30 | | eldif 3893 |
. . . . 5
⊢ (𝐴 ∈ (𝑃 ∖ 𝐷) ↔ (𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷)) |
31 | 29, 30 | bitr4di 288 |
. . . 4
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ (𝑃 ∖ 𝐷))) |
32 | 2 | biantrurd 532 |
. . . . 5
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷))) |
33 | | eldif 3893 |
. . . . 5
⊢ (𝐵 ∈ (𝑃 ∖ 𝐷) ↔ (𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷)) |
34 | 32, 33 | bitr4di 288 |
. . . 4
⊢ (𝜑 → (¬ 𝐵 ∈ 𝐷 ↔ 𝐵 ∈ (𝑃 ∖ 𝐷))) |
35 | 31, 34 | anbi12d 630 |
. . 3
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)))) |
36 | 35 | anbi1d 629 |
. 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃 ∖ 𝐷) ∧ 𝐵 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
37 | 28, 36 | bitr4d 281 |
1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |