MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islnopp Structured version   Visualization version   GIF version

Theorem islnopp 28673
Description: The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
islnopp.a (𝜑𝐴𝑃)
islnopp.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islnopp (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐷(𝑡)   𝑃(𝑡)   𝐺(𝑡,𝑎,𝑏)   𝐼(𝑡)   (𝑡,𝑎,𝑏)   𝑂(𝑡,𝑎,𝑏)

Proof of Theorem islnopp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnopp.a . . 3 (𝜑𝐴𝑃)
2 islnopp.b . . 3 (𝜑𝐵𝑃)
3 eleq1 2817 . . . . . 6 (𝑢 = 𝐴 → (𝑢 ∈ (𝑃𝐷) ↔ 𝐴 ∈ (𝑃𝐷)))
43anbi1d 631 . . . . 5 (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
5 oveq1 7397 . . . . . . 7 (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣))
65eleq2d 2815 . . . . . 6 (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣)))
76rexbidv 3158 . . . . 5 (𝑢 = 𝐴 → (∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)))
84, 7anbi12d 632 . . . 4 (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣))))
9 eleq1 2817 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ∈ (𝑃𝐷) ↔ 𝐵 ∈ (𝑃𝐷)))
109anbi2d 630 . . . . 5 (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
11 oveq2 7398 . . . . . . 7 (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵))
1211eleq2d 2815 . . . . . 6 (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵)))
1312rexbidv 3158 . . . . 5 (𝑣 = 𝐵 → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
1410, 13anbi12d 632 . . . 4 (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
15 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
16 simpl 482 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
1716eleq1d 2814 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑢 ∈ (𝑃𝐷)))
18 simpr 484 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1918eleq1d 2814 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑣 ∈ (𝑃𝐷)))
2017, 19anbi12d 632 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
21 oveq12 7399 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
2221eleq2d 2815 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣)))
2322rexbidv 3158 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)))
2420, 23anbi12d 632 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))))
2524cbvopabv 5183 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
2615, 25eqtri 2753 . . . 4 𝑂 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
278, 14, 26brabg 5502 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
281, 2, 27syl2anc 584 . 2 (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
291biantrurd 532 . . . . 5 (𝜑 → (¬ 𝐴𝐷 ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷)))
30 eldif 3927 . . . . 5 (𝐴 ∈ (𝑃𝐷) ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷))
3129, 30bitr4di 289 . . . 4 (𝜑 → (¬ 𝐴𝐷𝐴 ∈ (𝑃𝐷)))
322biantrurd 532 . . . . 5 (𝜑 → (¬ 𝐵𝐷 ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷)))
33 eldif 3927 . . . . 5 (𝐵 ∈ (𝑃𝐷) ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷))
3432, 33bitr4di 289 . . . 4 (𝜑 → (¬ 𝐵𝐷𝐵 ∈ (𝑃𝐷)))
3531, 34anbi12d 632 . . 3 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
3635anbi1d 631 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
3728, 36bitr4d 282 1 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cdif 3914   class class class wbr 5110  {copab 5172  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  Itvcitv 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  islnoppd  28674  oppne1  28675  oppne2  28676  oppne3  28677  oppcom  28678  oppnid  28680  opphllem1  28681  opphllem3  28683  opphllem5  28685  opphllem6  28686  oppperpex  28687  outpasch  28689  lnopp2hpgb  28697  hpgerlem  28699  colopp  28703  colhp  28704  trgcopyeulem  28739
  Copyright terms: Public domain W3C validator