MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiopp Structured version   Visualization version   GIF version

Theorem lmiopp 28042
Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lmiopp.n 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmiopp.a (𝜑𝐴𝑃)
lmiopp.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
lmiopp (𝜑𝐴𝑂(𝑀𝐴))
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑀,𝑎,𝑏,𝑡   𝑡,𝑂   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem lmiopp
StepHypRef Expression
1 lmiopp.p . 2 𝑃 = (Base‘𝐺)
2 lmiopp.m . 2 = (dist‘𝐺)
3 lmiopp.i . 2 𝐼 = (Itv‘𝐺)
4 lmiopp.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 lmiopp.a . 2 (𝜑𝐴𝑃)
6 lmiopp.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 lmiopp.h . . 3 (𝜑𝐺DimTarskiG≥2)
8 lmiopp.n . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
9 lmiopp.l . . 3 𝐿 = (LineG‘𝐺)
10 lmiopp.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
111, 2, 3, 6, 7, 8, 9, 10, 5lmicl 28026 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
12 eqidd 2733 . . . 4 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
131, 2, 3, 6, 7, 8, 9, 10, 5, 11islmib 28027 . . . 4 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
1412, 13mpbid 231 . . 3 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
1514simpld 495 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
16 lmiopp.1 . 2 (𝜑 → ¬ 𝐴𝐷)
171, 2, 3, 6, 7, 8, 9, 10, 5lmilmi 28029 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
1817eqeq1d 2734 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ 𝐴 = (𝑀𝐴)))
191, 2, 3, 6, 7, 8, 9, 10, 11lmiinv 28032 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ (𝑀𝐴) ∈ 𝐷))
20 eqcom 2739 . . . . . 6 (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴)
2120a1i 11 . . . . 5 (𝜑 → (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴))
2218, 19, 213bitr3d 308 . . . 4 (𝜑 → ((𝑀𝐴) ∈ 𝐷 ↔ (𝑀𝐴) = 𝐴))
231, 2, 3, 6, 7, 8, 9, 10, 5lmiinv 28032 . . . 4 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
2422, 23bitrd 278 . . 3 (𝜑 → ((𝑀𝐴) ∈ 𝐷𝐴𝐷))
2516, 24mtbird 324 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ 𝐷)
261, 2, 3, 6, 7, 5, 11midbtwn 28019 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
271, 2, 3, 4, 5, 11, 15, 16, 25, 26islnoppd 27980 1 (𝜑𝐴𝑂(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  cdif 3944   class class class wbr 5147  {copab 5209  ran crn 5676  cfv 6540  (class class class)co 7405  2c2 12263  Basecbs 17140  distcds 17202  TarskiGcstrkg 27667  DimTarskiGcstrkgld 27671  Itvcitv 27673  LineGclng 27674  ⟂Gcperpg 27935  midGcmid 28012  lInvGclmi 28013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-trkgc 27688  df-trkgb 27689  df-trkgcb 27690  df-trkgld 27692  df-trkg 27693  df-cgrg 27751  df-leg 27823  df-mir 27893  df-rag 27934  df-perpg 27936  df-mid 28014  df-lmi 28015
This theorem is referenced by:  trgcopyeulem  28045
  Copyright terms: Public domain W3C validator