Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiopp Structured version   Visualization version   GIF version

Theorem lmiopp 26599
 Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lmiopp.n 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmiopp.a (𝜑𝐴𝑃)
lmiopp.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
lmiopp (𝜑𝐴𝑂(𝑀𝐴))
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑀,𝑎,𝑏,𝑡   𝑡,𝑂   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem lmiopp
StepHypRef Expression
1 lmiopp.p . 2 𝑃 = (Base‘𝐺)
2 lmiopp.m . 2 = (dist‘𝐺)
3 lmiopp.i . 2 𝐼 = (Itv‘𝐺)
4 lmiopp.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 lmiopp.a . 2 (𝜑𝐴𝑃)
6 lmiopp.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 lmiopp.h . . 3 (𝜑𝐺DimTarskiG≥2)
8 lmiopp.n . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
9 lmiopp.l . . 3 𝐿 = (LineG‘𝐺)
10 lmiopp.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
111, 2, 3, 6, 7, 8, 9, 10, 5lmicl 26583 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
12 eqidd 2802 . . . 4 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
131, 2, 3, 6, 7, 8, 9, 10, 5, 11islmib 26584 . . . 4 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
1412, 13mpbid 235 . . 3 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
1514simpld 498 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
16 lmiopp.1 . 2 (𝜑 → ¬ 𝐴𝐷)
171, 2, 3, 6, 7, 8, 9, 10, 5lmilmi 26586 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
1817eqeq1d 2803 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ 𝐴 = (𝑀𝐴)))
191, 2, 3, 6, 7, 8, 9, 10, 11lmiinv 26589 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ (𝑀𝐴) ∈ 𝐷))
20 eqcom 2808 . . . . . 6 (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴)
2120a1i 11 . . . . 5 (𝜑 → (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴))
2218, 19, 213bitr3d 312 . . . 4 (𝜑 → ((𝑀𝐴) ∈ 𝐷 ↔ (𝑀𝐴) = 𝐴))
231, 2, 3, 6, 7, 8, 9, 10, 5lmiinv 26589 . . . 4 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
2422, 23bitrd 282 . . 3 (𝜑 → ((𝑀𝐴) ∈ 𝐷𝐴𝐷))
2516, 24mtbird 328 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ 𝐷)
261, 2, 3, 6, 7, 5, 11midbtwn 26576 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
271, 2, 3, 4, 5, 11, 15, 16, 25, 26islnoppd 26537 1 (𝜑𝐴𝑂(𝑀𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112  ∃wrex 3110   ∖ cdif 3881   class class class wbr 5033  {copab 5095  ran crn 5524  ‘cfv 6328  (class class class)co 7139  2c2 11684  Basecbs 16478  distcds 16569  TarskiGcstrkg 26227  DimTarskiG≥cstrkgld 26231  Itvcitv 26233  LineGclng 26234  ⟂Gcperpg 26492  midGcmid 26569  lInvGclmi 26570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-trkgc 26245  df-trkgb 26246  df-trkgcb 26247  df-trkgld 26249  df-trkg 26250  df-cgrg 26308  df-leg 26380  df-mir 26450  df-rag 26491  df-perpg 26493  df-mid 26571  df-lmi 26572 This theorem is referenced by:  trgcopyeulem  26602
 Copyright terms: Public domain W3C validator