MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiopp Structured version   Visualization version   GIF version

Theorem lmiopp 26847
Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lmiopp.n 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmiopp.a (𝜑𝐴𝑃)
lmiopp.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
lmiopp (𝜑𝐴𝑂(𝑀𝐴))
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑀,𝑎,𝑏,𝑡   𝑡,𝑂   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem lmiopp
StepHypRef Expression
1 lmiopp.p . 2 𝑃 = (Base‘𝐺)
2 lmiopp.m . 2 = (dist‘𝐺)
3 lmiopp.i . 2 𝐼 = (Itv‘𝐺)
4 lmiopp.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 lmiopp.a . 2 (𝜑𝐴𝑃)
6 lmiopp.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 lmiopp.h . . 3 (𝜑𝐺DimTarskiG≥2)
8 lmiopp.n . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
9 lmiopp.l . . 3 𝐿 = (LineG‘𝐺)
10 lmiopp.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
111, 2, 3, 6, 7, 8, 9, 10, 5lmicl 26831 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
12 eqidd 2737 . . . 4 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
131, 2, 3, 6, 7, 8, 9, 10, 5, 11islmib 26832 . . . 4 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
1412, 13mpbid 235 . . 3 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
1514simpld 498 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
16 lmiopp.1 . 2 (𝜑 → ¬ 𝐴𝐷)
171, 2, 3, 6, 7, 8, 9, 10, 5lmilmi 26834 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
1817eqeq1d 2738 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ 𝐴 = (𝑀𝐴)))
191, 2, 3, 6, 7, 8, 9, 10, 11lmiinv 26837 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ (𝑀𝐴) ∈ 𝐷))
20 eqcom 2743 . . . . . 6 (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴)
2120a1i 11 . . . . 5 (𝜑 → (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴))
2218, 19, 213bitr3d 312 . . . 4 (𝜑 → ((𝑀𝐴) ∈ 𝐷 ↔ (𝑀𝐴) = 𝐴))
231, 2, 3, 6, 7, 8, 9, 10, 5lmiinv 26837 . . . 4 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
2422, 23bitrd 282 . . 3 (𝜑 → ((𝑀𝐴) ∈ 𝐷𝐴𝐷))
2516, 24mtbird 328 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ 𝐷)
261, 2, 3, 6, 7, 5, 11midbtwn 26824 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
271, 2, 3, 4, 5, 11, 15, 16, 25, 26islnoppd 26785 1 (𝜑𝐴𝑂(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wrex 3052  cdif 3850   class class class wbr 5039  {copab 5101  ran crn 5537  cfv 6358  (class class class)co 7191  2c2 11850  Basecbs 16666  distcds 16758  TarskiGcstrkg 26475  DimTarskiGcstrkgld 26479  Itvcitv 26481  LineGclng 26482  ⟂Gcperpg 26740  midGcmid 26817  lInvGclmi 26818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-s2 14378  df-s3 14379  df-trkgc 26493  df-trkgb 26494  df-trkgcb 26495  df-trkgld 26497  df-trkg 26498  df-cgrg 26556  df-leg 26628  df-mir 26698  df-rag 26739  df-perpg 26741  df-mid 26819  df-lmi 26820
This theorem is referenced by:  trgcopyeulem  26850
  Copyright terms: Public domain W3C validator