| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmiopp | Structured version Visualization version GIF version | ||
| Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
| Ref | Expression |
|---|---|
| lmiopp.p | ⊢ 𝑃 = (Base‘𝐺) |
| lmiopp.m | ⊢ − = (dist‘𝐺) |
| lmiopp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| lmiopp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmiopp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| lmiopp.h | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmiopp.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmiopp.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| lmiopp.n | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmiopp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lmiopp.1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| lmiopp | ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmiopp.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | lmiopp.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | lmiopp.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | lmiopp.o | . 2 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | lmiopp.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | lmiopp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | lmiopp.h | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 8 | lmiopp.n | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 9 | lmiopp.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 10 | lmiopp.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 11 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmicl 28731 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 12 | eqidd 2735 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐴)) | |
| 13 | 1, 2, 3, 6, 7, 8, 9, 10, 5, 11 | islmib 28732 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))))) |
| 14 | 12, 13 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴)))) |
| 15 | 14 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷) |
| 16 | lmiopp.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | |
| 17 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmilmi 28734 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
| 18 | 17 | eqeq1d 2736 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ 𝐴 = (𝑀‘𝐴))) |
| 19 | 1, 2, 3, 6, 7, 8, 9, 10, 11 | lmiinv 28737 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ (𝑀‘𝐴) ∈ 𝐷)) |
| 20 | eqcom 2741 | . . . . . 6 ⊢ (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴)) |
| 22 | 18, 19, 21 | 3bitr3d 309 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ (𝑀‘𝐴) = 𝐴)) |
| 23 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmiinv 28737 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 ∈ 𝐷)) |
| 24 | 22, 23 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ 𝐴 ∈ 𝐷)) |
| 25 | 16, 24 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ (𝑀‘𝐴) ∈ 𝐷) |
| 26 | 1, 2, 3, 6, 7, 5, 11 | midbtwn 28724 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ (𝐴𝐼(𝑀‘𝐴))) |
| 27 | 1, 2, 3, 4, 5, 11, 15, 16, 25, 26 | islnoppd 28685 | 1 ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∖ cdif 3928 class class class wbr 5123 {copab 5185 ran crn 5666 ‘cfv 6541 (class class class)co 7413 2c2 12303 Basecbs 17230 distcds 17283 TarskiGcstrkg 28372 DimTarskiG≥cstrkgld 28376 Itvcitv 28378 LineGclng 28379 ⟂Gcperpg 28640 midGcmid 28717 lInvGclmi 28718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkgld 28397 df-trkg 28398 df-cgrg 28456 df-leg 28528 df-mir 28598 df-rag 28639 df-perpg 28641 df-mid 28719 df-lmi 28720 |
| This theorem is referenced by: trgcopyeulem 28750 |
| Copyright terms: Public domain | W3C validator |