MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiopp Structured version   Visualization version   GIF version

Theorem lmiopp 28781
Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lmiopp.n 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmiopp.a (𝜑𝐴𝑃)
lmiopp.1 (𝜑 → ¬ 𝐴𝐷)
Assertion
Ref Expression
lmiopp (𝜑𝐴𝑂(𝑀𝐴))
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑀,𝑎,𝑏,𝑡   𝑡,𝑂   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐿(𝑡,𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem lmiopp
StepHypRef Expression
1 lmiopp.p . 2 𝑃 = (Base‘𝐺)
2 lmiopp.m . 2 = (dist‘𝐺)
3 lmiopp.i . 2 𝐼 = (Itv‘𝐺)
4 lmiopp.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 lmiopp.a . 2 (𝜑𝐴𝑃)
6 lmiopp.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 lmiopp.h . . 3 (𝜑𝐺DimTarskiG≥2)
8 lmiopp.n . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
9 lmiopp.l . . 3 𝐿 = (LineG‘𝐺)
10 lmiopp.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
111, 2, 3, 6, 7, 8, 9, 10, 5lmicl 28765 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
12 eqidd 2736 . . . 4 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
131, 2, 3, 6, 7, 8, 9, 10, 5, 11islmib 28766 . . . 4 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
1412, 13mpbid 232 . . 3 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
1514simpld 494 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
16 lmiopp.1 . 2 (𝜑 → ¬ 𝐴𝐷)
171, 2, 3, 6, 7, 8, 9, 10, 5lmilmi 28768 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
1817eqeq1d 2737 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ 𝐴 = (𝑀𝐴)))
191, 2, 3, 6, 7, 8, 9, 10, 11lmiinv 28771 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝐴)) = (𝑀𝐴) ↔ (𝑀𝐴) ∈ 𝐷))
20 eqcom 2742 . . . . . 6 (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴)
2120a1i 11 . . . . 5 (𝜑 → (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴))
2218, 19, 213bitr3d 309 . . . 4 (𝜑 → ((𝑀𝐴) ∈ 𝐷 ↔ (𝑀𝐴) = 𝐴))
231, 2, 3, 6, 7, 8, 9, 10, 5lmiinv 28771 . . . 4 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
2422, 23bitrd 279 . . 3 (𝜑 → ((𝑀𝐴) ∈ 𝐷𝐴𝐷))
2516, 24mtbird 325 . 2 (𝜑 → ¬ (𝑀𝐴) ∈ 𝐷)
261, 2, 3, 6, 7, 5, 11midbtwn 28758 . 2 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
271, 2, 3, 4, 5, 11, 15, 16, 25, 26islnoppd 28719 1 (𝜑𝐴𝑂(𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wrex 3060  cdif 3923   class class class wbr 5119  {copab 5181  ran crn 5655  cfv 6531  (class class class)co 7405  2c2 12295  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  DimTarskiGcstrkgld 28410  Itvcitv 28412  LineGclng 28413  ⟂Gcperpg 28674  midGcmid 28751  lInvGclmi 28752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkgld 28431  df-trkg 28432  df-cgrg 28490  df-leg 28562  df-mir 28632  df-rag 28673  df-perpg 28675  df-mid 28753  df-lmi 28754
This theorem is referenced by:  trgcopyeulem  28784
  Copyright terms: Public domain W3C validator