| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmiopp | Structured version Visualization version GIF version | ||
| Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
| Ref | Expression |
|---|---|
| lmiopp.p | ⊢ 𝑃 = (Base‘𝐺) |
| lmiopp.m | ⊢ − = (dist‘𝐺) |
| lmiopp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| lmiopp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmiopp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| lmiopp.h | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmiopp.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmiopp.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| lmiopp.n | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmiopp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lmiopp.1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| lmiopp | ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmiopp.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | lmiopp.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | lmiopp.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | lmiopp.o | . 2 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | lmiopp.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | lmiopp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | lmiopp.h | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 8 | lmiopp.n | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 9 | lmiopp.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 10 | lmiopp.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 11 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmicl 28765 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 12 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐴)) | |
| 13 | 1, 2, 3, 6, 7, 8, 9, 10, 5, 11 | islmib 28766 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))))) |
| 14 | 12, 13 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴)))) |
| 15 | 14 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ 𝐷) |
| 16 | lmiopp.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | |
| 17 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmilmi 28768 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
| 18 | 17 | eqeq1d 2735 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ 𝐴 = (𝑀‘𝐴))) |
| 19 | 1, 2, 3, 6, 7, 8, 9, 10, 11 | lmiinv 28771 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝐴)) = (𝑀‘𝐴) ↔ (𝑀‘𝐴) ∈ 𝐷)) |
| 20 | eqcom 2740 | . . . . . 6 ⊢ (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴) | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐴) ↔ (𝑀‘𝐴) = 𝐴)) |
| 22 | 18, 19, 21 | 3bitr3d 309 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ (𝑀‘𝐴) = 𝐴)) |
| 23 | 1, 2, 3, 6, 7, 8, 9, 10, 5 | lmiinv 28771 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) = 𝐴 ↔ 𝐴 ∈ 𝐷)) |
| 24 | 22, 23 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ 𝐷 ↔ 𝐴 ∈ 𝐷)) |
| 25 | 16, 24 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ (𝑀‘𝐴) ∈ 𝐷) |
| 26 | 1, 2, 3, 6, 7, 5, 11 | midbtwn 28758 | . 2 ⊢ (𝜑 → (𝐴(midG‘𝐺)(𝑀‘𝐴)) ∈ (𝐴𝐼(𝑀‘𝐴))) |
| 27 | 1, 2, 3, 4, 5, 11, 15, 16, 25, 26 | islnoppd 28719 | 1 ⊢ (𝜑 → 𝐴𝑂(𝑀‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∖ cdif 3895 class class class wbr 5093 {copab 5155 ran crn 5620 ‘cfv 6486 (class class class)co 7352 2c2 12187 Basecbs 17122 distcds 17172 TarskiGcstrkg 28406 DimTarskiG≥cstrkgld 28410 Itvcitv 28412 LineGclng 28413 ⟂Gcperpg 28674 midGcmid 28751 lInvGclmi 28752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkgld 28431 df-trkg 28432 df-cgrg 28490 df-leg 28562 df-mir 28632 df-rag 28673 df-perpg 28675 df-mid 28753 df-lmi 28754 |
| This theorem is referenced by: trgcopyeulem 28784 |
| Copyright terms: Public domain | W3C validator |