MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem4 Structured version   Visualization version   GIF version

Theorem opphllem4 28729
Description: Lemma for opphl 28733. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem3.t (𝜑𝑅𝑆)
opphllem3.l (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
opphllem3.u (𝜑𝑈𝑃)
opphllem3.v (𝜑 → (𝑁𝑅) = 𝑆)
opphllem4.u (𝜑𝑉𝑃)
opphllem4.1 (𝜑𝑈(𝐾𝑅)𝐴)
opphllem4.2 (𝜑𝑉(𝐾𝑆)𝐶)
Assertion
Ref Expression
opphllem4 (𝜑𝑈𝑂𝑉)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝑡,𝑉   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem opphllem4
StepHypRef Expression
1 hpg.p . 2 𝑃 = (Base‘𝐺)
2 hpg.d . 2 = (dist‘𝐺)
3 hpg.i . 2 𝐼 = (Itv‘𝐺)
4 hpg.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . 2 𝐿 = (LineG‘𝐺)
6 opphl.d . 2 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . 2 (𝜑𝐺 ∈ TarskiG)
8 opphllem4.u . 2 (𝜑𝑉𝑃)
9 opphllem3.u . 2 (𝜑𝑈𝑃)
10 opphllem5.n . . 3 𝑁 = ((pInvG‘𝐺)‘𝑀)
11 eqid 2735 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
12 opphllem5.m . . . 4 (𝜑𝑀𝑃)
131, 2, 3, 5, 11, 7, 12, 10, 9mircl 28640 . . 3 (𝜑 → (𝑁𝑈) ∈ 𝑃)
14 opphllem5.s . . 3 (𝜑𝑆𝐷)
151, 5, 3, 7, 6, 14tglnpt 28528 . . . . . 6 (𝜑𝑆𝑃)
16 opphllem5.r . . . . . . 7 (𝜑𝑅𝐷)
171, 5, 3, 7, 6, 16tglnpt 28528 . . . . . 6 (𝜑𝑅𝑃)
18 opphllem3.t . . . . . . 7 (𝜑𝑅𝑆)
1918necomd 2987 . . . . . 6 (𝜑𝑆𝑅)
201, 2, 3, 5, 11, 7, 12, 10, 17mirbtwn 28637 . . . . . . 7 (𝜑𝑀 ∈ ((𝑁𝑅)𝐼𝑅))
21 opphllem3.v . . . . . . . 8 (𝜑 → (𝑁𝑅) = 𝑆)
2221oveq1d 7420 . . . . . . 7 (𝜑 → ((𝑁𝑅)𝐼𝑅) = (𝑆𝐼𝑅))
2320, 22eleqtrd 2836 . . . . . 6 (𝜑𝑀 ∈ (𝑆𝐼𝑅))
241, 3, 5, 7, 15, 17, 12, 19, 23btwnlng1 28598 . . . . 5 (𝜑𝑀 ∈ (𝑆𝐿𝑅))
251, 3, 5, 7, 15, 17, 19, 19, 6, 14, 16tglinethru 28615 . . . . 5 (𝜑𝐷 = (𝑆𝐿𝑅))
2624, 25eleqtrrd 2837 . . . 4 (𝜑𝑀𝐷)
27 opphllem5.a . . . . . . 7 (𝜑𝐴𝑃)
28 opphllem5.c . . . . . . 7 (𝜑𝐶𝑃)
29 opphllem5.o . . . . . . 7 (𝜑𝐴𝑂𝐶)
301, 2, 3, 4, 5, 6, 7, 27, 28, 29oppne1 28720 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
31 opphl.k . . . . . . . . . . 11 𝐾 = (hlG‘𝐺)
32 opphllem4.1 . . . . . . . . . . 11 (𝜑𝑈(𝐾𝑅)𝐴)
331, 3, 31, 9, 27, 17, 7, 32hlne1 28584 . . . . . . . . . 10 (𝜑𝑈𝑅)
3433necomd 2987 . . . . . . . . 9 (𝜑𝑅𝑈)
351, 3, 31, 9, 27, 17, 7, 5, 32hlln 28586 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐴𝐿𝑅))
361, 3, 31, 9, 27, 17, 7, 32hlne2 28585 . . . . . . . . 9 (𝜑𝐴𝑅)
371, 3, 5, 7, 17, 9, 27, 34, 35, 36lnrot1 28602 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅𝐿𝑈))
3837adantr 480 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐴 ∈ (𝑅𝐿𝑈))
397adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐺 ∈ TarskiG)
4017adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑃)
419adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝑃)
4234adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑈)
436adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐷 ∈ ran 𝐿)
4416adantr 480 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝐷)
45 simpr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝐷)
461, 3, 5, 39, 40, 41, 42, 42, 43, 44, 45tglinethru 28615 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐷 = (𝑅𝐿𝑈))
4738, 46eleqtrrd 2837 . . . . . 6 ((𝜑𝑈𝐷) → 𝐴𝐷)
4830, 47mtand 815 . . . . 5 (𝜑 → ¬ 𝑈𝐷)
497adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5012adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝑃)
519adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝑃)
521, 2, 3, 5, 11, 49, 50, 10, 51mirmir 28641 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) = 𝑈)
536adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5426adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝐷)
55 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁𝑈) ∈ 𝐷)
561, 2, 3, 5, 11, 49, 10, 53, 54, 55mirln 28655 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) ∈ 𝐷)
5752, 56eqeltrrd 2835 . . . . 5 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝐷)
5848, 57mtand 815 . . . 4 (𝜑 → ¬ (𝑁𝑈) ∈ 𝐷)
591, 2, 3, 5, 11, 7, 12, 10, 9mirbtwn 28637 . . . 4 (𝜑𝑀 ∈ ((𝑁𝑈)𝐼𝑈))
601, 2, 3, 4, 13, 9, 26, 58, 48, 59islnoppd 28719 . . 3 (𝜑 → (𝑁𝑈)𝑂𝑈)
61 eqidd 2736 . . 3 (𝜑 → (𝑁𝑈) = (𝑁𝑈))
62 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
63 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
64 opphllem3.l . . . . . . . 8 (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
651, 2, 3, 4, 5, 6, 7, 31, 10, 27, 28, 16, 14, 12, 29, 62, 63, 18, 64, 9, 21opphllem3 28728 . . . . . . 7 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
6632, 65mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝐶)
67 opphllem4.2 . . . . . . 7 (𝜑𝑉(𝐾𝑆)𝐶)
681, 3, 31, 8, 28, 15, 7, 67hlcomd 28583 . . . . . 6 (𝜑𝐶(𝐾𝑆)𝑉)
691, 3, 31, 13, 28, 8, 7, 15, 66, 68hltr 28589 . . . . 5 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝑉)
701, 3, 31, 13, 8, 15, 7ishlg 28581 . . . . 5 (𝜑 → ((𝑁𝑈)(𝐾𝑆)𝑉 ↔ ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))))
7169, 70mpbid 232 . . . 4 (𝜑 → ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈)))))
7271simp1d 1142 . . 3 (𝜑 → (𝑁𝑈) ≠ 𝑆)
731, 3, 31, 28, 8, 15, 7, 68hlne2 28585 . . 3 (𝜑𝑉𝑆)
7471simp3d 1144 . . 3 (𝜑 → ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))
751, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 60, 26, 61, 72, 73, 74opphllem2 28727 . 2 (𝜑𝑉𝑂𝑈)
761, 2, 3, 4, 5, 6, 7, 8, 9, 75oppcom 28723 1 (𝜑𝑈𝑂𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923   class class class wbr 5119  {copab 5181  ran crn 5655  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  ≤Gcleg 28561  hlGchlg 28579  pInvGcmir 28631  ⟂Gcperpg 28674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-leg 28562  df-hlg 28580  df-mir 28632  df-rag 28673  df-perpg 28675
This theorem is referenced by:  opphllem5  28730
  Copyright terms: Public domain W3C validator