Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. 2
β’ π = (BaseβπΊ) |
2 | | hpg.d |
. 2
β’ β =
(distβπΊ) |
3 | | hpg.i |
. 2
β’ πΌ = (ItvβπΊ) |
4 | | hpg.o |
. 2
β’ π = {β¨π, πβ© β£ ((π β (π β π·) β§ π β (π β π·)) β§ βπ‘ β π· π‘ β (ππΌπ))} |
5 | | opphl.l |
. 2
β’ πΏ = (LineGβπΊ) |
6 | | opphl.d |
. 2
β’ (π β π· β ran πΏ) |
7 | | opphl.g |
. 2
β’ (π β πΊ β TarskiG) |
8 | | opphllem4.u |
. 2
β’ (π β π β π) |
9 | | opphllem3.u |
. 2
β’ (π β π β π) |
10 | | opphllem5.n |
. . 3
β’ π = ((pInvGβπΊ)βπ) |
11 | | eqid 2731 |
. . . 4
β’
(pInvGβπΊ) =
(pInvGβπΊ) |
12 | | opphllem5.m |
. . . 4
β’ (π β π β π) |
13 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mircl 28176 |
. . 3
β’ (π β (πβπ) β π) |
14 | | opphllem5.s |
. . 3
β’ (π β π β π·) |
15 | 1, 5, 3, 7, 6, 14 | tglnpt 28064 |
. . . . . 6
β’ (π β π β π) |
16 | | opphllem5.r |
. . . . . . 7
β’ (π β π
β π·) |
17 | 1, 5, 3, 7, 6, 16 | tglnpt 28064 |
. . . . . 6
β’ (π β π
β π) |
18 | | opphllem3.t |
. . . . . . 7
β’ (π β π
β π) |
19 | 18 | necomd 2995 |
. . . . . 6
β’ (π β π β π
) |
20 | 1, 2, 3, 5, 11, 7,
12, 10, 17 | mirbtwn 28173 |
. . . . . . 7
β’ (π β π β ((πβπ
)πΌπ
)) |
21 | | opphllem3.v |
. . . . . . . 8
β’ (π β (πβπ
) = π) |
22 | 21 | oveq1d 7427 |
. . . . . . 7
β’ (π β ((πβπ
)πΌπ
) = (ππΌπ
)) |
23 | 20, 22 | eleqtrd 2834 |
. . . . . 6
β’ (π β π β (ππΌπ
)) |
24 | 1, 3, 5, 7, 15, 17, 12, 19, 23 | btwnlng1 28134 |
. . . . 5
β’ (π β π β (ππΏπ
)) |
25 | 1, 3, 5, 7, 15, 17, 19, 19, 6, 14, 16 | tglinethru 28151 |
. . . . 5
β’ (π β π· = (ππΏπ
)) |
26 | 24, 25 | eleqtrrd 2835 |
. . . 4
β’ (π β π β π·) |
27 | | opphllem5.a |
. . . . . . 7
β’ (π β π΄ β π) |
28 | | opphllem5.c |
. . . . . . 7
β’ (π β πΆ β π) |
29 | | opphllem5.o |
. . . . . . 7
β’ (π β π΄ππΆ) |
30 | 1, 2, 3, 4, 5, 6, 7, 27, 28, 29 | oppne1 28256 |
. . . . . 6
β’ (π β Β¬ π΄ β π·) |
31 | | opphl.k |
. . . . . . . . . . 11
β’ πΎ = (hlGβπΊ) |
32 | | opphllem4.1 |
. . . . . . . . . . 11
β’ (π β π(πΎβπ
)π΄) |
33 | 1, 3, 31, 9, 27, 17, 7, 32 | hlne1 28120 |
. . . . . . . . . 10
β’ (π β π β π
) |
34 | 33 | necomd 2995 |
. . . . . . . . 9
β’ (π β π
β π) |
35 | 1, 3, 31, 9, 27, 17, 7, 5, 32 | hlln 28122 |
. . . . . . . . 9
β’ (π β π β (π΄πΏπ
)) |
36 | 1, 3, 31, 9, 27, 17, 7, 32 | hlne2 28121 |
. . . . . . . . 9
β’ (π β π΄ β π
) |
37 | 1, 3, 5, 7, 17, 9,
27, 34, 35, 36 | lnrot1 28138 |
. . . . . . . 8
β’ (π β π΄ β (π
πΏπ)) |
38 | 37 | adantr 480 |
. . . . . . 7
β’ ((π β§ π β π·) β π΄ β (π
πΏπ)) |
39 | 7 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β πΊ β TarskiG) |
40 | 17 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β π
β π) |
41 | 9 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β π β π) |
42 | 34 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β π
β π) |
43 | 6 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β π· β ran πΏ) |
44 | 16 | adantr 480 |
. . . . . . . 8
β’ ((π β§ π β π·) β π
β π·) |
45 | | simpr 484 |
. . . . . . . 8
β’ ((π β§ π β π·) β π β π·) |
46 | 1, 3, 5, 39, 40, 41, 42, 42, 43, 44, 45 | tglinethru 28151 |
. . . . . . 7
β’ ((π β§ π β π·) β π· = (π
πΏπ)) |
47 | 38, 46 | eleqtrrd 2835 |
. . . . . 6
β’ ((π β§ π β π·) β π΄ β π·) |
48 | 30, 47 | mtand 813 |
. . . . 5
β’ (π β Β¬ π β π·) |
49 | 7 | adantr 480 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β πΊ β TarskiG) |
50 | 12 | adantr 480 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β π β π) |
51 | 9 | adantr 480 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β π β π) |
52 | 1, 2, 3, 5, 11, 49, 50, 10, 51 | mirmir 28177 |
. . . . . 6
β’ ((π β§ (πβπ) β π·) β (πβ(πβπ)) = π) |
53 | 6 | adantr 480 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β π· β ran πΏ) |
54 | 26 | adantr 480 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β π β π·) |
55 | | simpr 484 |
. . . . . . 7
β’ ((π β§ (πβπ) β π·) β (πβπ) β π·) |
56 | 1, 2, 3, 5, 11, 49, 10, 53, 54, 55 | mirln 28191 |
. . . . . 6
β’ ((π β§ (πβπ) β π·) β (πβ(πβπ)) β π·) |
57 | 52, 56 | eqeltrrd 2833 |
. . . . 5
β’ ((π β§ (πβπ) β π·) β π β π·) |
58 | 48, 57 | mtand 813 |
. . . 4
β’ (π β Β¬ (πβπ) β π·) |
59 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mirbtwn 28173 |
. . . 4
β’ (π β π β ((πβπ)πΌπ)) |
60 | 1, 2, 3, 4, 13, 9,
26, 58, 48, 59 | islnoppd 28255 |
. . 3
β’ (π β (πβπ)ππ) |
61 | | eqidd 2732 |
. . 3
β’ (π β (πβπ) = (πβπ)) |
62 | | opphllem5.p |
. . . . . . . 8
β’ (π β π·(βGβπΊ)(π΄πΏπ
)) |
63 | | opphllem5.q |
. . . . . . . 8
β’ (π β π·(βGβπΊ)(πΆπΏπ)) |
64 | | opphllem3.l |
. . . . . . . 8
β’ (π β (π β πΆ)(β€GβπΊ)(π
β π΄)) |
65 | 1, 2, 3, 4, 5, 6, 7, 31, 10, 27, 28, 16, 14, 12, 29, 62, 63, 18, 64, 9, 21 | opphllem3 28264 |
. . . . . . 7
β’ (π β (π(πΎβπ
)π΄ β (πβπ)(πΎβπ)πΆ)) |
66 | 32, 65 | mpbid 231 |
. . . . . 6
β’ (π β (πβπ)(πΎβπ)πΆ) |
67 | | opphllem4.2 |
. . . . . . 7
β’ (π β π(πΎβπ)πΆ) |
68 | 1, 3, 31, 8, 28, 15, 7, 67 | hlcomd 28119 |
. . . . . 6
β’ (π β πΆ(πΎβπ)π) |
69 | 1, 3, 31, 13, 28, 8, 7, 15, 66, 68 | hltr 28125 |
. . . . 5
β’ (π β (πβπ)(πΎβπ)π) |
70 | 1, 3, 31, 13, 8, 15, 7 | ishlg 28117 |
. . . . 5
β’ (π β ((πβπ)(πΎβπ)π β ((πβπ) β π β§ π β π β§ ((πβπ) β (ππΌπ) β¨ π β (ππΌ(πβπ)))))) |
71 | 69, 70 | mpbid 231 |
. . . 4
β’ (π β ((πβπ) β π β§ π β π β§ ((πβπ) β (ππΌπ) β¨ π β (ππΌ(πβπ))))) |
72 | 71 | simp1d 1141 |
. . 3
β’ (π β (πβπ) β π) |
73 | 1, 3, 31, 28, 8, 15, 7, 68 | hlne2 28121 |
. . 3
β’ (π β π β π) |
74 | 71 | simp3d 1143 |
. . 3
β’ (π β ((πβπ) β (ππΌπ) β¨ π β (ππΌ(πβπ)))) |
75 | 1, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 60, 26, 61, 72, 73, 74 | opphllem2 28263 |
. 2
β’ (π β πππ) |
76 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 75 | oppcom 28259 |
1
β’ (π β πππ) |