MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem4 Structured version   Visualization version   GIF version

Theorem opphllem4 27111
Description: Lemma for opphl 27115. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem3.t (𝜑𝑅𝑆)
opphllem3.l (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
opphllem3.u (𝜑𝑈𝑃)
opphllem3.v (𝜑 → (𝑁𝑅) = 𝑆)
opphllem4.u (𝜑𝑉𝑃)
opphllem4.1 (𝜑𝑈(𝐾𝑅)𝐴)
opphllem4.2 (𝜑𝑉(𝐾𝑆)𝐶)
Assertion
Ref Expression
opphllem4 (𝜑𝑈𝑂𝑉)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝑡,𝑉   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem opphllem4
StepHypRef Expression
1 hpg.p . 2 𝑃 = (Base‘𝐺)
2 hpg.d . 2 = (dist‘𝐺)
3 hpg.i . 2 𝐼 = (Itv‘𝐺)
4 hpg.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . 2 𝐿 = (LineG‘𝐺)
6 opphl.d . 2 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . 2 (𝜑𝐺 ∈ TarskiG)
8 opphllem4.u . 2 (𝜑𝑉𝑃)
9 opphllem3.u . 2 (𝜑𝑈𝑃)
10 opphllem5.n . . 3 𝑁 = ((pInvG‘𝐺)‘𝑀)
11 eqid 2738 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
12 opphllem5.m . . . 4 (𝜑𝑀𝑃)
131, 2, 3, 5, 11, 7, 12, 10, 9mircl 27022 . . 3 (𝜑 → (𝑁𝑈) ∈ 𝑃)
14 opphllem5.s . . 3 (𝜑𝑆𝐷)
151, 5, 3, 7, 6, 14tglnpt 26910 . . . . . 6 (𝜑𝑆𝑃)
16 opphllem5.r . . . . . . 7 (𝜑𝑅𝐷)
171, 5, 3, 7, 6, 16tglnpt 26910 . . . . . 6 (𝜑𝑅𝑃)
18 opphllem3.t . . . . . . 7 (𝜑𝑅𝑆)
1918necomd 2999 . . . . . 6 (𝜑𝑆𝑅)
201, 2, 3, 5, 11, 7, 12, 10, 17mirbtwn 27019 . . . . . . 7 (𝜑𝑀 ∈ ((𝑁𝑅)𝐼𝑅))
21 opphllem3.v . . . . . . . 8 (𝜑 → (𝑁𝑅) = 𝑆)
2221oveq1d 7290 . . . . . . 7 (𝜑 → ((𝑁𝑅)𝐼𝑅) = (𝑆𝐼𝑅))
2320, 22eleqtrd 2841 . . . . . 6 (𝜑𝑀 ∈ (𝑆𝐼𝑅))
241, 3, 5, 7, 15, 17, 12, 19, 23btwnlng1 26980 . . . . 5 (𝜑𝑀 ∈ (𝑆𝐿𝑅))
251, 3, 5, 7, 15, 17, 19, 19, 6, 14, 16tglinethru 26997 . . . . 5 (𝜑𝐷 = (𝑆𝐿𝑅))
2624, 25eleqtrrd 2842 . . . 4 (𝜑𝑀𝐷)
27 opphllem5.a . . . . . . 7 (𝜑𝐴𝑃)
28 opphllem5.c . . . . . . 7 (𝜑𝐶𝑃)
29 opphllem5.o . . . . . . 7 (𝜑𝐴𝑂𝐶)
301, 2, 3, 4, 5, 6, 7, 27, 28, 29oppne1 27102 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
31 opphl.k . . . . . . . . . . 11 𝐾 = (hlG‘𝐺)
32 opphllem4.1 . . . . . . . . . . 11 (𝜑𝑈(𝐾𝑅)𝐴)
331, 3, 31, 9, 27, 17, 7, 32hlne1 26966 . . . . . . . . . 10 (𝜑𝑈𝑅)
3433necomd 2999 . . . . . . . . 9 (𝜑𝑅𝑈)
351, 3, 31, 9, 27, 17, 7, 5, 32hlln 26968 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐴𝐿𝑅))
361, 3, 31, 9, 27, 17, 7, 32hlne2 26967 . . . . . . . . 9 (𝜑𝐴𝑅)
371, 3, 5, 7, 17, 9, 27, 34, 35, 36lnrot1 26984 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅𝐿𝑈))
3837adantr 481 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐴 ∈ (𝑅𝐿𝑈))
397adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐺 ∈ TarskiG)
4017adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑃)
419adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝑃)
4234adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑈)
436adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐷 ∈ ran 𝐿)
4416adantr 481 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝐷)
45 simpr 485 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝐷)
461, 3, 5, 39, 40, 41, 42, 42, 43, 44, 45tglinethru 26997 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐷 = (𝑅𝐿𝑈))
4738, 46eleqtrrd 2842 . . . . . 6 ((𝜑𝑈𝐷) → 𝐴𝐷)
4830, 47mtand 813 . . . . 5 (𝜑 → ¬ 𝑈𝐷)
497adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5012adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝑃)
519adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝑃)
521, 2, 3, 5, 11, 49, 50, 10, 51mirmir 27023 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) = 𝑈)
536adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5426adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝐷)
55 simpr 485 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁𝑈) ∈ 𝐷)
561, 2, 3, 5, 11, 49, 10, 53, 54, 55mirln 27037 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) ∈ 𝐷)
5752, 56eqeltrrd 2840 . . . . 5 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝐷)
5848, 57mtand 813 . . . 4 (𝜑 → ¬ (𝑁𝑈) ∈ 𝐷)
591, 2, 3, 5, 11, 7, 12, 10, 9mirbtwn 27019 . . . 4 (𝜑𝑀 ∈ ((𝑁𝑈)𝐼𝑈))
601, 2, 3, 4, 13, 9, 26, 58, 48, 59islnoppd 27101 . . 3 (𝜑 → (𝑁𝑈)𝑂𝑈)
61 eqidd 2739 . . 3 (𝜑 → (𝑁𝑈) = (𝑁𝑈))
62 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
63 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
64 opphllem3.l . . . . . . . 8 (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
651, 2, 3, 4, 5, 6, 7, 31, 10, 27, 28, 16, 14, 12, 29, 62, 63, 18, 64, 9, 21opphllem3 27110 . . . . . . 7 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
6632, 65mpbid 231 . . . . . 6 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝐶)
67 opphllem4.2 . . . . . . 7 (𝜑𝑉(𝐾𝑆)𝐶)
681, 3, 31, 8, 28, 15, 7, 67hlcomd 26965 . . . . . 6 (𝜑𝐶(𝐾𝑆)𝑉)
691, 3, 31, 13, 28, 8, 7, 15, 66, 68hltr 26971 . . . . 5 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝑉)
701, 3, 31, 13, 8, 15, 7ishlg 26963 . . . . 5 (𝜑 → ((𝑁𝑈)(𝐾𝑆)𝑉 ↔ ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))))
7169, 70mpbid 231 . . . 4 (𝜑 → ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈)))))
7271simp1d 1141 . . 3 (𝜑 → (𝑁𝑈) ≠ 𝑆)
731, 3, 31, 28, 8, 15, 7, 68hlne2 26967 . . 3 (𝜑𝑉𝑆)
7471simp3d 1143 . . 3 (𝜑 → ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))
751, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 60, 26, 61, 72, 73, 74opphllem2 27109 . 2 (𝜑𝑉𝑂𝑈)
761, 2, 3, 4, 5, 6, 7, 8, 9, 75oppcom 27105 1 (𝜑𝑈𝑂𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884   class class class wbr 5074  {copab 5136  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  ≤Gcleg 26943  hlGchlg 26961  pInvGcmir 27013  ⟂Gcperpg 27056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-hlg 26962  df-mir 27014  df-rag 27055  df-perpg 27057
This theorem is referenced by:  opphllem5  27112
  Copyright terms: Public domain W3C validator