Proof of Theorem opphllem4
Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. 2
⊢ 𝑃 = (Base‘𝐺) |
2 | | hpg.d |
. 2
⊢ − =
(dist‘𝐺) |
3 | | hpg.i |
. 2
⊢ 𝐼 = (Itv‘𝐺) |
4 | | hpg.o |
. 2
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
5 | | opphl.l |
. 2
⊢ 𝐿 = (LineG‘𝐺) |
6 | | opphl.d |
. 2
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
7 | | opphl.g |
. 2
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
8 | | opphllem4.u |
. 2
⊢ (𝜑 → 𝑉 ∈ 𝑃) |
9 | | opphllem3.u |
. 2
⊢ (𝜑 → 𝑈 ∈ 𝑃) |
10 | | opphllem5.n |
. . 3
⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) |
11 | | eqid 2777 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
12 | | opphllem5.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑃) |
13 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mircl 26012 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) ∈ 𝑃) |
14 | | opphllem5.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐷) |
15 | | opphllem5.o |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴𝑂𝐶) |
16 | | opphllem5.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
17 | | opphllem5.c |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
18 | 1, 2, 3, 4, 16, 17 | islnopp 26087 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐶)))) |
19 | 15, 18 | mpbid 224 |
. . . . . . . . . 10
⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐶))) |
20 | 19 | simpld 490 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷)) |
21 | 20 | simpld 490 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
22 | | opphllem5.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ 𝐷) |
23 | 1, 5, 3, 7, 6, 22 | tglnpt 25900 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
24 | | opphl.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (hlG‘𝐺) |
25 | | opphllem4.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) |
26 | 1, 3, 24, 9, 16, 23, 7, 25 | hlne1 25956 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ≠ 𝑅) |
27 | 26 | necomd 3023 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ≠ 𝑈) |
28 | 1, 3, 24, 9, 16, 23, 7, 5, 25 | hlln 25958 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ (𝐴𝐿𝑅)) |
29 | 1, 3, 24, 9, 16, 23, 7 | ishlg 25953 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑈 ≠ 𝑅 ∧ 𝐴 ≠ 𝑅 ∧ (𝑈 ∈ (𝑅𝐼𝐴) ∨ 𝐴 ∈ (𝑅𝐼𝑈))))) |
30 | 25, 29 | mpbid 224 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ≠ 𝑅 ∧ 𝐴 ≠ 𝑅 ∧ (𝑈 ∈ (𝑅𝐼𝐴) ∨ 𝐴 ∈ (𝑅𝐼𝑈)))) |
31 | 30 | simp2d 1134 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≠ 𝑅) |
32 | 1, 3, 5, 7, 23, 9,
16, 27, 28, 31 | lnrot1 25974 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (𝑅𝐿𝑈)) |
33 | 32 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐴 ∈ (𝑅𝐿𝑈)) |
34 | 7 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐺 ∈ TarskiG) |
35 | 23 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ∈ 𝑃) |
36 | 9 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑈 ∈ 𝑃) |
37 | 27 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ≠ 𝑈) |
38 | 6 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐷 ∈ ran 𝐿) |
39 | 22 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ∈ 𝐷) |
40 | | simpr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑈 ∈ 𝐷) |
41 | 1, 3, 5, 34, 35, 36, 37, 37, 38, 39, 40 | tglinethru 25987 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐷 = (𝑅𝐿𝑈)) |
42 | 33, 41 | eleqtrrd 2861 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
43 | 21, 42 | mtand 806 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑈 ∈ 𝐷) |
44 | 7 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG) |
45 | 12 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑀 ∈ 𝑃) |
46 | 9 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑈 ∈ 𝑃) |
47 | 1, 2, 3, 5, 11, 44, 45, 10, 46 | mirmir 26013 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘(𝑁‘𝑈)) = 𝑈) |
48 | 6 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿) |
49 | 1, 5, 3, 7, 6, 14 | tglnpt 25900 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ 𝑃) |
50 | | opphllem3.t |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ≠ 𝑆) |
51 | 50 | necomd 3023 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ≠ 𝑅) |
52 | 1, 2, 3, 5, 11, 7,
12, 10, 23 | mirbtwn 26009 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ((𝑁‘𝑅)𝐼𝑅)) |
53 | | opphllem3.v |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) |
54 | 53 | oveq1d 6937 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑁‘𝑅)𝐼𝑅) = (𝑆𝐼𝑅)) |
55 | 52, 54 | eleqtrd 2860 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (𝑆𝐼𝑅)) |
56 | 1, 3, 5, 7, 49, 23, 12, 51, 55 | btwnlng1 25970 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (𝑆𝐿𝑅)) |
57 | 1, 3, 5, 7, 49, 23, 51, 51, 6, 14, 22 | tglinethru 25987 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 = (𝑆𝐿𝑅)) |
58 | 56, 57 | eleqtrrd 2861 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝐷) |
59 | 58 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑀 ∈ 𝐷) |
60 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘𝑈) ∈ 𝐷) |
61 | 1, 2, 3, 5, 11, 44, 10, 48, 59, 60 | mirln 26027 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘(𝑁‘𝑈)) ∈ 𝐷) |
62 | 47, 61 | eqeltrrd 2859 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑈 ∈ 𝐷) |
63 | 43, 62 | mtand 806 |
. . . . . 6
⊢ (𝜑 → ¬ (𝑁‘𝑈) ∈ 𝐷) |
64 | 63, 43 | jca 507 |
. . . . 5
⊢ (𝜑 → (¬ (𝑁‘𝑈) ∈ 𝐷 ∧ ¬ 𝑈 ∈ 𝐷)) |
65 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mirbtwn 26009 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ((𝑁‘𝑈)𝐼𝑈)) |
66 | | eleq1 2846 |
. . . . . . 7
⊢ (𝑡 = 𝑀 → (𝑡 ∈ ((𝑁‘𝑈)𝐼𝑈) ↔ 𝑀 ∈ ((𝑁‘𝑈)𝐼𝑈))) |
67 | 66 | rspcev 3510 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐷 ∧ 𝑀 ∈ ((𝑁‘𝑈)𝐼𝑈)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ ((𝑁‘𝑈)𝐼𝑈)) |
68 | 58, 65, 67 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ ((𝑁‘𝑈)𝐼𝑈)) |
69 | 64, 68 | jca 507 |
. . . 4
⊢ (𝜑 → ((¬ (𝑁‘𝑈) ∈ 𝐷 ∧ ¬ 𝑈 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ ((𝑁‘𝑈)𝐼𝑈))) |
70 | 1, 2, 3, 4, 13, 9 | islnopp 26087 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝑈)𝑂𝑈 ↔ ((¬ (𝑁‘𝑈) ∈ 𝐷 ∧ ¬ 𝑈 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ ((𝑁‘𝑈)𝐼𝑈)))) |
71 | 69, 70 | mpbird 249 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈)𝑂𝑈) |
72 | | eqidd 2778 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) = (𝑁‘𝑈)) |
73 | | opphllem5.p |
. . . . . . . 8
⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) |
74 | | opphllem5.q |
. . . . . . . 8
⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) |
75 | | opphllem3.l |
. . . . . . . 8
⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) |
76 | 1, 2, 3, 4, 5, 6, 7, 24, 10, 16, 17, 22, 14, 12, 15, 73, 74, 50, 75, 9, 53 | opphllem3 26097 |
. . . . . . 7
⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) |
77 | 25, 76 | mpbid 224 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝑈)(𝐾‘𝑆)𝐶) |
78 | | opphllem4.2 |
. . . . . . 7
⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) |
79 | 1, 3, 24, 8, 17, 49, 7, 78 | hlcomd 25955 |
. . . . . 6
⊢ (𝜑 → 𝐶(𝐾‘𝑆)𝑉) |
80 | 1, 3, 24, 13, 17, 8, 7, 49, 77, 79 | hltr 25961 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝑈)(𝐾‘𝑆)𝑉) |
81 | 1, 3, 24, 13, 8, 49, 7 | ishlg 25953 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝑈)(𝐾‘𝑆)𝑉 ↔ ((𝑁‘𝑈) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈)))))) |
82 | 80, 81 | mpbid 224 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝑈) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈))))) |
83 | 82 | simp1d 1133 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) ≠ 𝑆) |
84 | 82 | simp2d 1134 |
. . 3
⊢ (𝜑 → 𝑉 ≠ 𝑆) |
85 | 82 | simp3d 1135 |
. . 3
⊢ (𝜑 → ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈)))) |
86 | 1, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 71, 58, 72, 83, 84, 85 | opphllem2 26096 |
. 2
⊢ (𝜑 → 𝑉𝑂𝑈) |
87 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 86 | oppcom 26092 |
1
⊢ (𝜑 → 𝑈𝑂𝑉) |