MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem4 Structured version   Visualization version   GIF version

Theorem opphllem4 26813
Description: Lemma for opphl 26817. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem3.t (𝜑𝑅𝑆)
opphllem3.l (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
opphllem3.u (𝜑𝑈𝑃)
opphllem3.v (𝜑 → (𝑁𝑅) = 𝑆)
opphllem4.u (𝜑𝑉𝑃)
opphllem4.1 (𝜑𝑈(𝐾𝑅)𝐴)
opphllem4.2 (𝜑𝑉(𝐾𝑆)𝐶)
Assertion
Ref Expression
opphllem4 (𝜑𝑈𝑂𝑉)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝑡,𝑉   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem opphllem4
StepHypRef Expression
1 hpg.p . 2 𝑃 = (Base‘𝐺)
2 hpg.d . 2 = (dist‘𝐺)
3 hpg.i . 2 𝐼 = (Itv‘𝐺)
4 hpg.o . 2 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . 2 𝐿 = (LineG‘𝐺)
6 opphl.d . 2 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . 2 (𝜑𝐺 ∈ TarskiG)
8 opphllem4.u . 2 (𝜑𝑉𝑃)
9 opphllem3.u . 2 (𝜑𝑈𝑃)
10 opphllem5.n . . 3 𝑁 = ((pInvG‘𝐺)‘𝑀)
11 eqid 2734 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
12 opphllem5.m . . . 4 (𝜑𝑀𝑃)
131, 2, 3, 5, 11, 7, 12, 10, 9mircl 26724 . . 3 (𝜑 → (𝑁𝑈) ∈ 𝑃)
14 opphllem5.s . . 3 (𝜑𝑆𝐷)
151, 5, 3, 7, 6, 14tglnpt 26612 . . . . . 6 (𝜑𝑆𝑃)
16 opphllem5.r . . . . . . 7 (𝜑𝑅𝐷)
171, 5, 3, 7, 6, 16tglnpt 26612 . . . . . 6 (𝜑𝑅𝑃)
18 opphllem3.t . . . . . . 7 (𝜑𝑅𝑆)
1918necomd 2990 . . . . . 6 (𝜑𝑆𝑅)
201, 2, 3, 5, 11, 7, 12, 10, 17mirbtwn 26721 . . . . . . 7 (𝜑𝑀 ∈ ((𝑁𝑅)𝐼𝑅))
21 opphllem3.v . . . . . . . 8 (𝜑 → (𝑁𝑅) = 𝑆)
2221oveq1d 7217 . . . . . . 7 (𝜑 → ((𝑁𝑅)𝐼𝑅) = (𝑆𝐼𝑅))
2320, 22eleqtrd 2836 . . . . . 6 (𝜑𝑀 ∈ (𝑆𝐼𝑅))
241, 3, 5, 7, 15, 17, 12, 19, 23btwnlng1 26682 . . . . 5 (𝜑𝑀 ∈ (𝑆𝐿𝑅))
251, 3, 5, 7, 15, 17, 19, 19, 6, 14, 16tglinethru 26699 . . . . 5 (𝜑𝐷 = (𝑆𝐿𝑅))
2624, 25eleqtrrd 2837 . . . 4 (𝜑𝑀𝐷)
27 opphllem5.a . . . . . . 7 (𝜑𝐴𝑃)
28 opphllem5.c . . . . . . 7 (𝜑𝐶𝑃)
29 opphllem5.o . . . . . . 7 (𝜑𝐴𝑂𝐶)
301, 2, 3, 4, 5, 6, 7, 27, 28, 29oppne1 26804 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
31 opphl.k . . . . . . . . . . 11 𝐾 = (hlG‘𝐺)
32 opphllem4.1 . . . . . . . . . . 11 (𝜑𝑈(𝐾𝑅)𝐴)
331, 3, 31, 9, 27, 17, 7, 32hlne1 26668 . . . . . . . . . 10 (𝜑𝑈𝑅)
3433necomd 2990 . . . . . . . . 9 (𝜑𝑅𝑈)
351, 3, 31, 9, 27, 17, 7, 5, 32hlln 26670 . . . . . . . . 9 (𝜑𝑈 ∈ (𝐴𝐿𝑅))
361, 3, 31, 9, 27, 17, 7, 32hlne2 26669 . . . . . . . . 9 (𝜑𝐴𝑅)
371, 3, 5, 7, 17, 9, 27, 34, 35, 36lnrot1 26686 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅𝐿𝑈))
3837adantr 484 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐴 ∈ (𝑅𝐿𝑈))
397adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐺 ∈ TarskiG)
4017adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑃)
419adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝑃)
4234adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝑈)
436adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝐷 ∈ ran 𝐿)
4416adantr 484 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑅𝐷)
45 simpr 488 . . . . . . . 8 ((𝜑𝑈𝐷) → 𝑈𝐷)
461, 3, 5, 39, 40, 41, 42, 42, 43, 44, 45tglinethru 26699 . . . . . . 7 ((𝜑𝑈𝐷) → 𝐷 = (𝑅𝐿𝑈))
4738, 46eleqtrrd 2837 . . . . . 6 ((𝜑𝑈𝐷) → 𝐴𝐷)
4830, 47mtand 816 . . . . 5 (𝜑 → ¬ 𝑈𝐷)
497adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5012adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝑃)
519adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝑃)
521, 2, 3, 5, 11, 49, 50, 10, 51mirmir 26725 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) = 𝑈)
536adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5426adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑀𝐷)
55 simpr 488 . . . . . . 7 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁𝑈) ∈ 𝐷)
561, 2, 3, 5, 11, 49, 10, 53, 54, 55mirln 26739 . . . . . 6 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → (𝑁‘(𝑁𝑈)) ∈ 𝐷)
5752, 56eqeltrrd 2835 . . . . 5 ((𝜑 ∧ (𝑁𝑈) ∈ 𝐷) → 𝑈𝐷)
5848, 57mtand 816 . . . 4 (𝜑 → ¬ (𝑁𝑈) ∈ 𝐷)
591, 2, 3, 5, 11, 7, 12, 10, 9mirbtwn 26721 . . . 4 (𝜑𝑀 ∈ ((𝑁𝑈)𝐼𝑈))
601, 2, 3, 4, 13, 9, 26, 58, 48, 59islnoppd 26803 . . 3 (𝜑 → (𝑁𝑈)𝑂𝑈)
61 eqidd 2735 . . 3 (𝜑 → (𝑁𝑈) = (𝑁𝑈))
62 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
63 opphllem5.q . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
64 opphllem3.l . . . . . . . 8 (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
651, 2, 3, 4, 5, 6, 7, 31, 10, 27, 28, 16, 14, 12, 29, 62, 63, 18, 64, 9, 21opphllem3 26812 . . . . . . 7 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
6632, 65mpbid 235 . . . . . 6 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝐶)
67 opphllem4.2 . . . . . . 7 (𝜑𝑉(𝐾𝑆)𝐶)
681, 3, 31, 8, 28, 15, 7, 67hlcomd 26667 . . . . . 6 (𝜑𝐶(𝐾𝑆)𝑉)
691, 3, 31, 13, 28, 8, 7, 15, 66, 68hltr 26673 . . . . 5 (𝜑 → (𝑁𝑈)(𝐾𝑆)𝑉)
701, 3, 31, 13, 8, 15, 7ishlg 26665 . . . . 5 (𝜑 → ((𝑁𝑈)(𝐾𝑆)𝑉 ↔ ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))))
7169, 70mpbid 235 . . . 4 (𝜑 → ((𝑁𝑈) ≠ 𝑆𝑉𝑆 ∧ ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈)))))
7271simp1d 1144 . . 3 (𝜑 → (𝑁𝑈) ≠ 𝑆)
731, 3, 31, 28, 8, 15, 7, 68hlne2 26669 . . 3 (𝜑𝑉𝑆)
7471simp3d 1146 . . 3 (𝜑 → ((𝑁𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁𝑈))))
751, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 60, 26, 61, 72, 73, 74opphllem2 26811 . 2 (𝜑𝑉𝑂𝑈)
761, 2, 3, 4, 5, 6, 7, 8, 9, 75oppcom 26807 1 (𝜑𝑈𝑂𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wrex 3055  cdif 3854   class class class wbr 5043  {copab 5105  ran crn 5541  cfv 6369  (class class class)co 7202  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  Itvcitv 26499  LineGclng 26500  ≤Gcleg 26645  hlGchlg 26663  pInvGcmir 26715  ⟂Gcperpg 26758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkg 26516  df-cgrg 26574  df-leg 26646  df-hlg 26664  df-mir 26716  df-rag 26757  df-perpg 26759
This theorem is referenced by:  opphllem5  26814
  Copyright terms: Public domain W3C validator