Proof of Theorem opphllem4
Step | Hyp | Ref
| Expression |
1 | | hpg.p |
. 2
⊢ 𝑃 = (Base‘𝐺) |
2 | | hpg.d |
. 2
⊢ − =
(dist‘𝐺) |
3 | | hpg.i |
. 2
⊢ 𝐼 = (Itv‘𝐺) |
4 | | hpg.o |
. 2
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
5 | | opphl.l |
. 2
⊢ 𝐿 = (LineG‘𝐺) |
6 | | opphl.d |
. 2
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
7 | | opphl.g |
. 2
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
8 | | opphllem4.u |
. 2
⊢ (𝜑 → 𝑉 ∈ 𝑃) |
9 | | opphllem3.u |
. 2
⊢ (𝜑 → 𝑈 ∈ 𝑃) |
10 | | opphllem5.n |
. . 3
⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) |
11 | | eqid 2738 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
12 | | opphllem5.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑃) |
13 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mircl 27022 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) ∈ 𝑃) |
14 | | opphllem5.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐷) |
15 | 1, 5, 3, 7, 6, 14 | tglnpt 26910 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑃) |
16 | | opphllem5.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ 𝐷) |
17 | 1, 5, 3, 7, 6, 16 | tglnpt 26910 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
18 | | opphllem3.t |
. . . . . . 7
⊢ (𝜑 → 𝑅 ≠ 𝑆) |
19 | 18 | necomd 2999 |
. . . . . 6
⊢ (𝜑 → 𝑆 ≠ 𝑅) |
20 | 1, 2, 3, 5, 11, 7,
12, 10, 17 | mirbtwn 27019 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ((𝑁‘𝑅)𝐼𝑅)) |
21 | | opphllem3.v |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) |
22 | 21 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘𝑅)𝐼𝑅) = (𝑆𝐼𝑅)) |
23 | 20, 22 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑆𝐼𝑅)) |
24 | 1, 3, 5, 7, 15, 17, 12, 19, 23 | btwnlng1 26980 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑆𝐿𝑅)) |
25 | 1, 3, 5, 7, 15, 17, 19, 19, 6, 14, 16 | tglinethru 26997 |
. . . . 5
⊢ (𝜑 → 𝐷 = (𝑆𝐿𝑅)) |
26 | 24, 25 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝐷) |
27 | | opphllem5.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
28 | | opphllem5.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
29 | | opphllem5.o |
. . . . . . 7
⊢ (𝜑 → 𝐴𝑂𝐶) |
30 | 1, 2, 3, 4, 5, 6, 7, 27, 28, 29 | oppne1 27102 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
31 | | opphl.k |
. . . . . . . . . . 11
⊢ 𝐾 = (hlG‘𝐺) |
32 | | opphllem4.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) |
33 | 1, 3, 31, 9, 27, 17, 7, 32 | hlne1 26966 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≠ 𝑅) |
34 | 33 | necomd 2999 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ≠ 𝑈) |
35 | 1, 3, 31, 9, 27, 17, 7, 5, 32 | hlln 26968 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ (𝐴𝐿𝑅)) |
36 | 1, 3, 31, 9, 27, 17, 7, 32 | hlne2 26967 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ 𝑅) |
37 | 1, 3, 5, 7, 17, 9,
27, 34, 35, 36 | lnrot1 26984 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝑅𝐿𝑈)) |
38 | 37 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐴 ∈ (𝑅𝐿𝑈)) |
39 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐺 ∈ TarskiG) |
40 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ∈ 𝑃) |
41 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑈 ∈ 𝑃) |
42 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ≠ 𝑈) |
43 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐷 ∈ ran 𝐿) |
44 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑅 ∈ 𝐷) |
45 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝑈 ∈ 𝐷) |
46 | 1, 3, 5, 39, 40, 41, 42, 42, 43, 44, 45 | tglinethru 26997 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐷 = (𝑅𝐿𝑈)) |
47 | 38, 46 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
48 | 30, 47 | mtand 813 |
. . . . 5
⊢ (𝜑 → ¬ 𝑈 ∈ 𝐷) |
49 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝐺 ∈ TarskiG) |
50 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑀 ∈ 𝑃) |
51 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑈 ∈ 𝑃) |
52 | 1, 2, 3, 5, 11, 49, 50, 10, 51 | mirmir 27023 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘(𝑁‘𝑈)) = 𝑈) |
53 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝐷 ∈ ran 𝐿) |
54 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑀 ∈ 𝐷) |
55 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘𝑈) ∈ 𝐷) |
56 | 1, 2, 3, 5, 11, 49, 10, 53, 54, 55 | mirln 27037 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → (𝑁‘(𝑁‘𝑈)) ∈ 𝐷) |
57 | 52, 56 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁‘𝑈) ∈ 𝐷) → 𝑈 ∈ 𝐷) |
58 | 48, 57 | mtand 813 |
. . . 4
⊢ (𝜑 → ¬ (𝑁‘𝑈) ∈ 𝐷) |
59 | 1, 2, 3, 5, 11, 7,
12, 10, 9 | mirbtwn 27019 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ((𝑁‘𝑈)𝐼𝑈)) |
60 | 1, 2, 3, 4, 13, 9,
26, 58, 48, 59 | islnoppd 27101 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈)𝑂𝑈) |
61 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) = (𝑁‘𝑈)) |
62 | | opphllem5.p |
. . . . . . . 8
⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) |
63 | | opphllem5.q |
. . . . . . . 8
⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) |
64 | | opphllem3.l |
. . . . . . . 8
⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) |
65 | 1, 2, 3, 4, 5, 6, 7, 31, 10, 27, 28, 16, 14, 12, 29, 62, 63, 18, 64, 9, 21 | opphllem3 27110 |
. . . . . . 7
⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) |
66 | 32, 65 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝑈)(𝐾‘𝑆)𝐶) |
67 | | opphllem4.2 |
. . . . . . 7
⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) |
68 | 1, 3, 31, 8, 28, 15, 7, 67 | hlcomd 26965 |
. . . . . 6
⊢ (𝜑 → 𝐶(𝐾‘𝑆)𝑉) |
69 | 1, 3, 31, 13, 28, 8, 7, 15, 66, 68 | hltr 26971 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝑈)(𝐾‘𝑆)𝑉) |
70 | 1, 3, 31, 13, 8, 15, 7 | ishlg 26963 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝑈)(𝐾‘𝑆)𝑉 ↔ ((𝑁‘𝑈) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈)))))) |
71 | 69, 70 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝑈) ≠ 𝑆 ∧ 𝑉 ≠ 𝑆 ∧ ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈))))) |
72 | 71 | simp1d 1141 |
. . 3
⊢ (𝜑 → (𝑁‘𝑈) ≠ 𝑆) |
73 | 1, 3, 31, 28, 8, 15, 7, 68 | hlne2 26967 |
. . 3
⊢ (𝜑 → 𝑉 ≠ 𝑆) |
74 | 71 | simp3d 1143 |
. . 3
⊢ (𝜑 → ((𝑁‘𝑈) ∈ (𝑆𝐼𝑉) ∨ 𝑉 ∈ (𝑆𝐼(𝑁‘𝑈)))) |
75 | 1, 2, 3, 4, 5, 6, 7, 10, 13, 8, 9, 14, 60, 26, 61, 72, 73, 74 | opphllem2 27109 |
. 2
⊢ (𝜑 → 𝑉𝑂𝑈) |
76 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 75 | oppcom 27105 |
1
⊢ (𝜑 → 𝑈𝑂𝑉) |