MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem2 Structured version   Visualization version   GIF version

Theorem opphllem2 28693
Description: Lemma for opphl 28699. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem2.z (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
Assertion
Ref Expression
opphllem2 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem2
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 hpg.d . . 3 = (dist‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 hpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . 3 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
8 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 opphllem1.c . . . 4 (𝜑𝐶𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑃)
12 opphllem1.b . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑃)
14 opphllem1.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
15 eqid 2729 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 opphllem1.m . . . . . . 7 (𝜑𝑀𝐷)
171, 5, 3, 8, 6, 16tglnpt 28494 . . . . . 6 (𝜑𝑀𝑃)
1817adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝑃)
191, 2, 3, 5, 15, 9, 18, 14, 13mircl 28606 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ∈ 𝑃)
2016adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝐷)
21 opphllem1.r . . . . . 6 (𝜑𝑅𝐷)
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝐷)
231, 2, 3, 5, 15, 9, 14, 7, 20, 22mirln 28621 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ∈ 𝐷)
24 simpr 484 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
25 simplr 768 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
2624, 25eqeltrd 2828 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
278ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
2812ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
291, 5, 3, 8, 6, 21tglnpt 28494 . . . . . . . . . . 11 (𝜑𝑅𝑃)
3029ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
31 opphllem1.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
3231ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
33 opphllem1.y . . . . . . . . . . 11 (𝜑𝐵𝑅)
3433ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
3534necomd 2980 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
36 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐼𝐵))
371, 3, 5, 27, 30, 28, 32, 35, 36btwnlng1 28564 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
381, 3, 5, 27, 28, 30, 32, 34, 37lncom 28567 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
396ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
40 simplr 768 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
4121ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
421, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41tglinethru 28581 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
4338, 42eleqtrrd 2831 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
4426, 43pm2.61dane 3012 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → 𝐴𝐷)
45 opphllem1.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
461, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne1 28686 . . . . . . . 8 (𝜑 → ¬ 𝐴𝐷)
4746ad2antrr 726 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
4844, 47pm2.65da 816 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
499adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5018adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝑃)
5113adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝑃)
521, 2, 3, 5, 15, 49, 50, 14, 51mirmir 28607 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) = 𝐵)
537adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5420adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝐷)
55 simpr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆𝐵) ∈ 𝐷)
561, 2, 3, 5, 15, 49, 14, 53, 54, 55mirln 28621 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) ∈ 𝐷)
5752, 56eqeltrrd 2829 . . . . . 6 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝐷)
5848, 57mtand 815 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ (𝑆𝐵) ∈ 𝐷)
591, 2, 3, 5, 15, 9, 18, 14, 13mirbtwn 28603 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀 ∈ ((𝑆𝐵)𝐼𝐵))
601, 2, 3, 4, 19, 13, 20, 58, 48, 59islnoppd 28685 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵)𝑂𝐵)
61 eqidd 2730 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) = (𝑆𝐵))
62 nelne2 3023 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ (𝑆𝐵) ∈ 𝐷) → (𝑆𝑅) ≠ (𝑆𝐵))
6323, 58, 62syl2anc 584 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ (𝑆𝐵))
6463necomd 2980 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ≠ (𝑆𝑅))
651, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne2 28687 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
6665adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐶𝐷)
67 nelne2 3023 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ 𝐶𝐷) → (𝑆𝑅) ≠ 𝐶)
6823, 66, 67syl2anc 584 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ 𝐶)
6968necomd 2980 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ≠ (𝑆𝑅))
70 opphllem1.n . . . . . . . 8 (𝜑𝐴 = (𝑆𝐶))
7170eqcomd 2735 . . . . . . 7 (𝜑 → (𝑆𝐶) = 𝐴)
721, 2, 3, 5, 15, 8, 17, 14, 10, 71mircom 28608 . . . . . 6 (𝜑 → (𝑆𝐴) = 𝐶)
7372adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) = 𝐶)
7429adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝑃)
7531adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴𝑃)
76 simpr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴 ∈ (𝑅𝐼𝐵))
771, 2, 3, 5, 15, 9, 18, 14, 74, 75, 13, 76mirbtwni 28616 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
7873, 77eqeltrrd 2829 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
791, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78opphllem1 28692 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑂𝐵)
801, 2, 3, 4, 5, 7, 9, 11, 13, 79oppcom 28689 . 2 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑂𝐶)
816adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
828adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐺 ∈ TarskiG)
8331adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑃)
8412adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑃)
8510adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐶𝑃)
8621adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑅𝐷)
8745adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑂𝐶)
8816adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑀𝐷)
8970adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴 = (𝑆𝐶))
90 opphllem1.x . . . 4 (𝜑𝐴𝑅)
9190adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑅)
9233adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑅)
93 simpr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵 ∈ (𝑅𝐼𝐴))
941, 2, 3, 4, 5, 81, 82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93opphllem1 28692 . 2 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑂𝐶)
95 opphllem2.z . 2 (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
9680, 94, 95mpjaodan 960 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3900   class class class wbr 5092  {copab 5154  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379  pInvGcmir 28597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-mir 28598
This theorem is referenced by:  opphllem4  28695  opphl  28699
  Copyright terms: Public domain W3C validator