MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem2 Structured version   Visualization version   GIF version

Theorem opphllem2 26540
Description: Lemma for opphl 26546. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem2.z (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
Assertion
Ref Expression
opphllem2 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem2
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 hpg.d . . 3 = (dist‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 hpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . 3 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76adantr 484 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
8 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 484 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 opphllem1.c . . . 4 (𝜑𝐶𝑃)
1110adantr 484 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑃)
12 opphllem1.b . . . 4 (𝜑𝐵𝑃)
1312adantr 484 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑃)
14 opphllem1.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
15 eqid 2824 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 opphllem1.m . . . . . . 7 (𝜑𝑀𝐷)
171, 5, 3, 8, 6, 16tglnpt 26341 . . . . . 6 (𝜑𝑀𝑃)
1817adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝑃)
191, 2, 3, 5, 15, 9, 18, 14, 13mircl 26453 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ∈ 𝑃)
2016adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝐷)
21 opphllem1.r . . . . . 6 (𝜑𝑅𝐷)
2221adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝐷)
231, 2, 3, 5, 15, 9, 14, 7, 20, 22mirln 26468 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ∈ 𝐷)
24 simpr 488 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
25 simplr 768 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
2624, 25eqeltrd 2916 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
278ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
2812ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
291, 5, 3, 8, 6, 21tglnpt 26341 . . . . . . . . . . 11 (𝜑𝑅𝑃)
3029ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
31 opphllem1.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
3231ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
33 opphllem1.y . . . . . . . . . . 11 (𝜑𝐵𝑅)
3433ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
3534necomd 3069 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
36 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐼𝐵))
371, 3, 5, 27, 30, 28, 32, 35, 36btwnlng1 26411 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
381, 3, 5, 27, 28, 30, 32, 34, 37lncom 26414 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
396ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
40 simplr 768 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
4121ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
421, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41tglinethru 26428 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
4338, 42eleqtrrd 2919 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
4426, 43pm2.61dane 3101 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → 𝐴𝐷)
45 opphllem1.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
461, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne1 26533 . . . . . . . 8 (𝜑 → ¬ 𝐴𝐷)
4746ad2antrr 725 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
4844, 47pm2.65da 816 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
499adantr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5018adantr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝑃)
5113adantr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝑃)
521, 2, 3, 5, 15, 49, 50, 14, 51mirmir 26454 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) = 𝐵)
537adantr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5420adantr 484 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝐷)
55 simpr 488 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆𝐵) ∈ 𝐷)
561, 2, 3, 5, 15, 49, 14, 53, 54, 55mirln 26468 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) ∈ 𝐷)
5752, 56eqeltrrd 2917 . . . . . 6 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝐷)
5848, 57mtand 815 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ (𝑆𝐵) ∈ 𝐷)
591, 2, 3, 5, 15, 9, 18, 14, 13mirbtwn 26450 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀 ∈ ((𝑆𝐵)𝐼𝐵))
601, 2, 3, 4, 19, 13, 20, 58, 48, 59islnoppd 26532 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵)𝑂𝐵)
61 eqidd 2825 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) = (𝑆𝐵))
62 nelne2 3111 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ (𝑆𝐵) ∈ 𝐷) → (𝑆𝑅) ≠ (𝑆𝐵))
6323, 58, 62syl2anc 587 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ (𝑆𝐵))
6463necomd 3069 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ≠ (𝑆𝑅))
651, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne2 26534 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
6665adantr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐶𝐷)
67 nelne2 3111 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ 𝐶𝐷) → (𝑆𝑅) ≠ 𝐶)
6823, 66, 67syl2anc 587 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ 𝐶)
6968necomd 3069 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ≠ (𝑆𝑅))
70 opphllem1.n . . . . . . . 8 (𝜑𝐴 = (𝑆𝐶))
7170eqcomd 2830 . . . . . . 7 (𝜑 → (𝑆𝐶) = 𝐴)
721, 2, 3, 5, 15, 8, 17, 14, 10, 71mircom 26455 . . . . . 6 (𝜑 → (𝑆𝐴) = 𝐶)
7372adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) = 𝐶)
7429adantr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝑃)
7531adantr 484 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴𝑃)
76 simpr 488 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴 ∈ (𝑅𝐼𝐵))
771, 2, 3, 5, 15, 9, 18, 14, 74, 75, 13, 76mirbtwni 26463 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
7873, 77eqeltrrd 2917 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
791, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78opphllem1 26539 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑂𝐵)
801, 2, 3, 4, 5, 7, 9, 11, 13, 79oppcom 26536 . 2 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑂𝐶)
816adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
828adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐺 ∈ TarskiG)
8331adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑃)
8412adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑃)
8510adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐶𝑃)
8621adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑅𝐷)
8745adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑂𝐶)
8816adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑀𝐷)
8970adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴 = (𝑆𝐶))
90 opphllem1.x . . . 4 (𝜑𝐴𝑅)
9190adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑅)
9233adantr 484 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑅)
93 simpr 488 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵 ∈ (𝑅𝐼𝐴))
941, 2, 3, 4, 5, 81, 82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93opphllem1 26539 . 2 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑂𝐶)
95 opphllem2.z . 2 (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
9680, 94, 95mpjaodan 956 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cdif 3916   class class class wbr 5053  {copab 5115  ran crn 5544  cfv 6344  (class class class)co 7146  Basecbs 16481  distcds 16572  TarskiGcstrkg 26222  Itvcitv 26228  LineGclng 26229  pInvGcmir 26444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9323  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-xnn0 11963  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-concat 13921  df-s1 13948  df-s2 14208  df-s3 14209  df-trkgc 26240  df-trkgb 26241  df-trkgcb 26242  df-trkg 26245  df-cgrg 26303  df-mir 26445
This theorem is referenced by:  opphllem4  26542  opphl  26546
  Copyright terms: Public domain W3C validator