MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppne1 Structured version   Visualization version   GIF version

Theorem oppne1 26089
Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
oppne1 (𝜑 → ¬ 𝐴𝐷)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppne1
StepHypRef Expression
1 oppcom.o . . 3 (𝜑𝐴𝑂𝐵)
2 hpg.p . . . 4 𝑃 = (Base‘𝐺)
3 hpg.d . . . 4 = (dist‘𝐺)
4 hpg.i . . . 4 𝐼 = (Itv‘𝐺)
5 hpg.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 oppcom.a . . . 4 (𝜑𝐴𝑃)
7 oppcom.b . . . 4 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7islnopp 26087 . . 3 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
91, 8mpbid 224 . 2 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
109simplld 758 1 (𝜑 → ¬ 𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wrex 3091  cdif 3789   class class class wbr 4886  {copab 4948  ran crn 5356  cfv 6135  (class class class)co 6922  Basecbs 16255  distcds 16347  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-iota 6099  df-fv 6143  df-ov 6925
This theorem is referenced by:  oppne3  26091  opptgdim2  26093  opphllem1  26095  opphllem2  26096  opphl  26102  hpgne1  26109  hpgne2  26110  lnopp2hpgb  26111  colopp  26117
  Copyright terms: Public domain W3C validator