![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppne1 | Structured version Visualization version GIF version |
Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
oppne1 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcom.o | . . 3 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
2 | hpg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | hpg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | hpg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | hpg.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
6 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | oppcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | islnopp 26087 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
9 | 1, 8 | mpbid 224 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
10 | 9 | simplld 758 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ∖ cdif 3789 class class class wbr 4886 {copab 4948 ran crn 5356 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 distcds 16347 TarskiGcstrkg 25781 Itvcitv 25787 LineGclng 25788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-iota 6099 df-fv 6143 df-ov 6925 |
This theorem is referenced by: oppne3 26091 opptgdim2 26093 opphllem1 26095 opphllem2 26096 opphl 26102 hpgne1 26109 hpgne2 26110 lnopp2hpgb 26111 colopp 26117 |
Copyright terms: Public domain | W3C validator |