![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version |
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispnrm 21472 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) | |
2 | 1 | simprbi 491 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
3 | 2 | sselda 3798 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
4 | eqid 2799 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) | |
5 | 4 | elrnmpt 5576 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
6 | 5 | adantl 474 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓)) |
7 | 3, 6 | mpbid 224 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑𝑚 ℕ)𝐴 = ∩ ran 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ⊆ wss 3769 ∩ cint 4667 ↦ cmpt 4922 ran crn 5313 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 ℕcn 11312 Clsdccld 21149 Nrmcnrm 21443 PNrmcpnrm 21445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-cnv 5320 df-dm 5322 df-rn 5323 df-iota 6064 df-fv 6109 df-ov 6881 df-pnrm 21452 |
This theorem is referenced by: pnrmopn 21476 |
Copyright terms: Public domain | W3C validator |