|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version | ||
| Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ispnrm 23347 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) | 
| 3 | 2 | sselda 3983 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) | 
| 4 | eqid 2737 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) | |
| 5 | 4 | elrnmpt 5969 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) | 
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) | 
| 7 | 3, 6 | mpbid 232 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ∩ cint 4946 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ℕcn 12266 Clsdccld 23024 Nrmcnrm 23318 PNrmcpnrm 23320 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-cnv 5693 df-dm 5695 df-rn 5696 df-iota 6514 df-fv 6569 df-ov 7434 df-pnrm 23327 | 
| This theorem is referenced by: pnrmopn 23351 | 
| Copyright terms: Public domain | W3C validator |