MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmcld Structured version   Visualization version   GIF version

Theorem pnrmcld 23236
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmcld ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽m ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmcld
StepHypRef Expression
1 ispnrm 23233 . . . 4 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)))
21simprbi 496 . . 3 (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
32sselda 3949 . 2 ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓))
4 eqid 2730 . . . 4 (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓) = (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓)
54elrnmpt 5925 . . 3 (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽m ℕ)𝐴 = ran 𝑓))
65adantl 481 . 2 ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽m ℕ) ↦ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽m ℕ)𝐴 = ran 𝑓))
73, 6mpbid 232 1 ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽m ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917   cint 4913  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  m cmap 8802  cn 12193  Clsdccld 22910  Nrmcnrm 23204  PNrmcpnrm 23206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522  df-ov 7393  df-pnrm 23213
This theorem is referenced by:  pnrmopn  23237
  Copyright terms: Public domain W3C validator