![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version |
Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispnrm 22713 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) | |
2 | 1 | simprbi 498 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
3 | 2 | sselda 3948 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
4 | eqid 2733 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) | |
5 | 4 | elrnmpt 5915 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) |
6 | 5 | adantl 483 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) |
7 | 3, 6 | mpbid 231 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ⊆ wss 3914 ∩ cint 4911 ↦ cmpt 5192 ran crn 5638 ‘cfv 6500 (class class class)co 7361 ↑m cmap 8771 ℕcn 12161 Clsdccld 22390 Nrmcnrm 22684 PNrmcpnrm 22686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-cnv 5645 df-dm 5647 df-rn 5648 df-iota 6452 df-fv 6508 df-ov 7364 df-pnrm 22693 |
This theorem is referenced by: pnrmopn 22717 |
Copyright terms: Public domain | W3C validator |