| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnrmcld | Structured version Visualization version GIF version | ||
| Description: A closed set in a perfectly normal space is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnrmcld | ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispnrm 23255 | . . . 4 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐽 ∈ PNrm → (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
| 3 | 2 | sselda 3934 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓)) |
| 4 | eqid 2731 | . . . 4 ⊢ (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) | |
| 5 | 4 | elrnmpt 5898 | . . 3 ⊢ (𝐴 ∈ (Clsd‘𝐽) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∈ ran (𝑓 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑓) ↔ ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓)) |
| 7 | 3, 6 | mpbid 232 | 1 ⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∃𝑓 ∈ (𝐽 ↑m ℕ)𝐴 = ∩ ran 𝑓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ∩ cint 4897 ↦ cmpt 5172 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℕcn 12125 Clsdccld 22932 Nrmcnrm 23226 PNrmcpnrm 23228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-cnv 5624 df-dm 5626 df-rn 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-pnrm 23235 |
| This theorem is referenced by: pnrmopn 23259 |
| Copyright terms: Public domain | W3C validator |