| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rneqd | ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rneq 5946 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| Copyright terms: Public domain | W3C validator |