MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr2 Structured version   Visualization version   GIF version

Theorem istsr2 18654
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
istsr2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦

Proof of Theorem istsr2
StepHypRef Expression
1 istsr.1 . . 3 𝑋 = dom 𝑅
21istsr 18653 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
3 qfto 6153 . . 3 ((𝑋 × 𝑋) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥))
43anbi2i 622 . 2 ((𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)) ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
52, 4bitri 275 1 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  cun 3974  wss 3976   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  PosetRelcps 18634   TosetRel ctsr 18635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-tsr 18637
This theorem is referenced by:  tsrlin  18655  tsrss  18659
  Copyright terms: Public domain W3C validator