|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > istsr2 | Structured version Visualization version GIF version | ||
| Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| istsr.1 | ⊢ 𝑋 = dom 𝑅 | 
| Ref | Expression | 
|---|---|
| istsr2 | ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | istsr.1 | . . 3 ⊢ 𝑋 = dom 𝑅 | |
| 2 | 1 | istsr 18628 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) | 
| 3 | qfto 6141 | . . 3 ⊢ ((𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅)) ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | 
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∪ cun 3949 ⊆ wss 3951 class class class wbr 5143 × cxp 5683 ◡ccnv 5684 dom cdm 5685 PosetRelcps 18609 TosetRel ctsr 18610 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-tsr 18612 | 
| This theorem is referenced by: tsrlin 18630 tsrss 18634 | 
| Copyright terms: Public domain | W3C validator |