MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr2 Structured version   Visualization version   GIF version

Theorem istsr2 18217
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
istsr2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦

Proof of Theorem istsr2
StepHypRef Expression
1 istsr.1 . . 3 𝑋 = dom 𝑅
21istsr 18216 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
3 qfto 6015 . . 3 ((𝑋 × 𝑋) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥))
43anbi2i 622 . 2 ((𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)) ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
52, 4bitri 274 1 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  cun 3881  wss 3883   class class class wbr 5070   × cxp 5578  ccnv 5579  dom cdm 5580  PosetRelcps 18197   TosetRel ctsr 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-tsr 18200
This theorem is referenced by:  tsrlin  18218  tsrss  18222
  Copyright terms: Public domain W3C validator