MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrss Structured version   Visualization version   GIF version

Theorem tsrss 18572
Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.)
Assertion
Ref Expression
tsrss (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel )

Proof of Theorem tsrss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psss 18563 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
2 inss1 4224 . . . . . 6 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅
3 dmss 5899 . . . . . 6 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅)
4 ssralv 4046 . . . . . 6 (dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅 → (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)))
52, 3, 4mp2b 10 . . . . 5 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥))
6 ssralv 4046 . . . . . . 7 (dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅 → (∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥)))
72, 3, 6mp2b 10 . . . . . 6 (∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
87ralimi 3078 . . . . 5 (∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
95, 8syl 17 . . . 4 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
10 inss2 4225 . . . . . . . . . 10 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
11 dmss 5899 . . . . . . . . . 10 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom (𝐴 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . 9 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom (𝐴 × 𝐴)
13 dmxpid 5926 . . . . . . . . 9 dom (𝐴 × 𝐴) = 𝐴
1412, 13sseqtri 4014 . . . . . . . 8 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝐴
1514sseli 3974 . . . . . . 7 (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → 𝑥𝐴)
1614sseli 3974 . . . . . . 7 (𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → 𝑦𝐴)
17 brinxp 5750 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
18 brinxp 5750 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1918ancoms 458 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2017, 19orbi12d 917 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2115, 16, 20syl2an 595 . . . . . 6 ((𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∧ 𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2221ralbidva 3170 . . . . 5 (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → (∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2322ralbiia 3086 . . . 4 (∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
249, 23sylib 217 . . 3 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
251, 24anim12i 612 . 2 ((𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ∧ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
26 eqid 2727 . . 3 dom 𝑅 = dom 𝑅
2726istsr2 18567 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)))
28 eqid 2727 . . 3 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
2928istsr2 18567 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ∧ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
3025, 27, 293imtr4i 292 1 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  wcel 2099  wral 3056  cin 3943  wss 3944   class class class wbr 5142   × cxp 5670  dom cdm 5672  PosetRelcps 18547   TosetRel ctsr 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ps 18549  df-tsr 18550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator