MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrss Structured version   Visualization version   GIF version

Theorem tsrss 17827
Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.)
Assertion
Ref Expression
tsrss (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel )

Proof of Theorem tsrss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psss 17818 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
2 inss1 4204 . . . . . 6 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅
3 dmss 5765 . . . . . 6 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅)
4 ssralv 4032 . . . . . 6 (dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅 → (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)))
52, 3, 4mp2b 10 . . . . 5 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥))
6 ssralv 4032 . . . . . . 7 (dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom 𝑅 → (∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥)))
72, 3, 6mp2b 10 . . . . . 6 (∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
87ralimi 3160 . . . . 5 (∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
95, 8syl 17 . . . 4 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥))
10 inss2 4205 . . . . . . . . . 10 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
11 dmss 5765 . . . . . . . . . 10 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom (𝐴 × 𝐴))
1210, 11ax-mp 5 . . . . . . . . 9 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ dom (𝐴 × 𝐴)
13 dmxpid 5794 . . . . . . . . 9 dom (𝐴 × 𝐴) = 𝐴
1412, 13sseqtri 4002 . . . . . . . 8 dom (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝐴
1514sseli 3962 . . . . . . 7 (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → 𝑥𝐴)
1614sseli 3962 . . . . . . 7 (𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → 𝑦𝐴)
17 brinxp 5624 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
18 brinxp 5624 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1918ancoms 461 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2017, 19orbi12d 915 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2115, 16, 20syl2an 597 . . . . . 6 ((𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∧ 𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2221ralbidva 3196 . . . . 5 (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) → (∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
2322ralbiia 3164 . . . 4 (∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
249, 23sylib 220 . . 3 (∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥) → ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
251, 24anim12i 614 . 2 ((𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)) → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ∧ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
26 eqid 2821 . . 3 dom 𝑅 = dom 𝑅
2726istsr2 17822 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑅𝑦𝑦𝑅𝑥)))
28 eqid 2821 . . 3 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
2928istsr2 17822 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel ↔ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ∧ ∀𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))∀𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))(𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
3025, 27, 293imtr4i 294 1 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wcel 2110  wral 3138  cin 3934  wss 3935   class class class wbr 5058   × cxp 5547  dom cdm 5549  PosetRelcps 17802   TosetRel ctsr 17803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ps 17804  df-tsr 17805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator