MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrlin Structured version   Visualization version   GIF version

Theorem tsrlin 18643
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
tsrlin ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem tsrlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istsr.1 . . . . 5 𝑋 = dom 𝑅
21istsr2 18642 . . . 4 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
32simprbi 496 . . 3 (𝑅 ∈ TosetRel → ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥))
4 breq1 5151 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
5 breq2 5152 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
64, 5orbi12d 918 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦𝑦𝑅𝐴)))
7 breq2 5152 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 breq1 5151 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
97, 8orbi12d 918 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
106, 9rspc2v 3633 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
113, 10syl5com 31 . 2 (𝑅 ∈ TosetRel → ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
12113impib 1115 1 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  dom cdm 5689  PosetRelcps 18622   TosetRel ctsr 18623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-tsr 18625
This theorem is referenced by:  tsrlemax  18644  ordtrest2lem  23227  ordthauslem  23407  ordthaus  23408
  Copyright terms: Public domain W3C validator