|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tsrlin | Structured version Visualization version GIF version | ||
| Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| istsr.1 | ⊢ 𝑋 = dom 𝑅 | 
| Ref | Expression | 
|---|---|
| tsrlin | ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
| 2 | 1 | istsr2 18629 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | 
| 3 | 2 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ TosetRel → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | 
| 4 | breq1 5146 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
| 5 | breq2 5147 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 6 | 4, 5 | orbi12d 919 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴))) | 
| 7 | breq2 5147 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
| 8 | breq1 5146 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 9 | 7, 8 | orbi12d 919 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) | 
| 10 | 6, 9 | rspc2v 3633 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) | 
| 11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝑅 ∈ TosetRel → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) | 
| 12 | 11 | 3impib 1117 | 1 ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 dom cdm 5685 PosetRelcps 18609 TosetRel ctsr 18610 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-tsr 18612 | 
| This theorem is referenced by: tsrlemax 18631 ordtrest2lem 23211 ordthauslem 23391 ordthaus 23392 | 
| Copyright terms: Public domain | W3C validator |