![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsrlin | Structured version Visualization version GIF version |
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
istsr.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
tsrlin | ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
2 | 1 | istsr2 18654 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
3 | 2 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ TosetRel → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
4 | breq1 5169 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
5 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
6 | 4, 5 | orbi12d 917 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴))) |
7 | breq2 5170 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
8 | breq1 5169 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
9 | 7, 8 | orbi12d 917 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
10 | 6, 9 | rspc2v 3646 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝑅 ∈ TosetRel → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
12 | 11 | 3impib 1116 | 1 ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 dom cdm 5700 PosetRelcps 18634 TosetRel ctsr 18635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-tsr 18637 |
This theorem is referenced by: tsrlemax 18656 ordtrest2lem 23232 ordthauslem 23412 ordthaus 23413 |
Copyright terms: Public domain | W3C validator |