MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrlin Structured version   Visualization version   GIF version

Theorem tsrlin 18542
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
tsrlin ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem tsrlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istsr.1 . . . . 5 𝑋 = dom 𝑅
21istsr2 18541 . . . 4 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
32simprbi 495 . . 3 (𝑅 ∈ TosetRel → ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥))
4 breq1 5150 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
5 breq2 5151 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
64, 5orbi12d 915 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦𝑦𝑅𝐴)))
7 breq2 5151 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 breq1 5150 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
97, 8orbi12d 915 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
106, 9rspc2v 3621 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
113, 10syl5com 31 . 2 (𝑅 ∈ TosetRel → ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
12113impib 1114 1 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  wral 3059   class class class wbr 5147  dom cdm 5675  PosetRelcps 18521   TosetRel ctsr 18522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-tsr 18524
This theorem is referenced by:  tsrlemax  18543  ordtrest2lem  22927  ordthauslem  23107  ordthaus  23108
  Copyright terms: Public domain W3C validator