![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsrlin | Structured version Visualization version GIF version |
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
istsr.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
tsrlin | ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
2 | 1 | istsr2 18575 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
3 | 2 | simprbi 495 | . . 3 ⊢ (𝑅 ∈ TosetRel → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
4 | breq1 5151 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
5 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
6 | 4, 5 | orbi12d 916 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴))) |
7 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
8 | breq1 5151 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
9 | 7, 8 | orbi12d 916 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ∨ 𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
10 | 6, 9 | rspc2v 3618 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
11 | 3, 10 | syl5com 31 | . 2 ⊢ (𝑅 ∈ TosetRel → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴))) |
12 | 11 | 3impib 1113 | 1 ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 class class class wbr 5148 dom cdm 5677 PosetRelcps 18555 TosetRel ctsr 18556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-tsr 18558 |
This theorem is referenced by: tsrlemax 18577 ordtrest2lem 23137 ordthauslem 23317 ordthaus 23318 |
Copyright terms: Public domain | W3C validator |