MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qfto Structured version   Visualization version   GIF version

Theorem qfto 6015
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
qfto ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem qfto
StepHypRef Expression
1 opelxp 5616 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 brun 5121 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
3 df-br 5071 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
4 vex 3426 . . . . . . 7 𝑥 ∈ V
5 vex 3426 . . . . . . 7 𝑦 ∈ V
64, 5brcnv 5780 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
76orbi2i 909 . . . . 5 ((𝑥𝑅𝑦𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
82, 3, 73bitr3i 300 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
91, 8imbi12i 350 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1092albii 1824 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
11 relxp 5598 . . 3 Rel (𝐴 × 𝐵)
12 ssrel 5683 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
1311, 12ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
14 r2al 3124 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1510, 13, 143bitr4i 302 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  wal 1537  wcel 2108  wral 3063  cun 3881  wss 3883  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  istsr2  18217  letsr  18226
  Copyright terms: Public domain W3C validator