![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qfto | Structured version Visualization version GIF version |
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
qfto | ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5673 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | brun 5160 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦)) | |
3 | df-br 5110 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅)) | |
4 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | brcnv 5842 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
7 | 6 | orbi2i 912 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
8 | 2, 3, 7 | 3bitr3i 301 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
9 | 1, 8 | imbi12i 351 | . . 3 ⊢ ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
10 | 9 | 2albii 1823 | . 2 ⊢ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
11 | relxp 5655 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
12 | ssrel 5742 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅)))) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ◡𝑅))) |
14 | r2al 3188 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | |
15 | 10, 13, 14 | 3bitr4i 303 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∀wal 1540 ∈ wcel 2107 ∀wral 3061 ∪ cun 3912 ⊆ wss 3914 ⟨cop 4596 class class class wbr 5109 × cxp 5635 ◡ccnv 5636 Rel wrel 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 |
This theorem is referenced by: istsr2 18481 letsr 18490 |
Copyright terms: Public domain | W3C validator |