MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qfto Structured version   Visualization version   GIF version

Theorem qfto 5864
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
qfto ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem qfto
StepHypRef Expression
1 opelxp 5486 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 brun 5019 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
3 df-br 4969 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
4 vex 3443 . . . . . . 7 𝑥 ∈ V
5 vex 3443 . . . . . . 7 𝑦 ∈ V
64, 5brcnv 5646 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
76orbi2i 907 . . . . 5 ((𝑥𝑅𝑦𝑥𝑅𝑦) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
82, 3, 73bitr3i 302 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
91, 8imbi12i 352 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1092albii 1806 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
11 relxp 5468 . . 3 Rel (𝐴 × 𝐵)
12 ssrel 5550 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
1311, 12ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
14 r2al 3170 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑦𝑅𝑥)))
1510, 13, 143bitr4i 304 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  wal 1523  wcel 2083  wral 3107  cun 3863  wss 3865  cop 4484   class class class wbr 4968   × cxp 5448  ccnv 5449  Rel wrel 5455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-br 4969  df-opab 5031  df-xp 5456  df-rel 5457  df-cnv 5458
This theorem is referenced by:  istsr2  17661  letsr  17670
  Copyright terms: Public domain W3C validator