| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qfto | Structured version Visualization version GIF version | ||
| Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| qfto | ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5695 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | brun 5175 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ (𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦)) | |
| 3 | df-br 5125 | . . . . 5 ⊢ (𝑥(𝑅 ∪ ◡𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) | |
| 4 | vex 3468 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | brcnv 5867 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 7 | 6 | orbi2i 912 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∨ 𝑥◡𝑅𝑦) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 8 | 2, 3, 7 | 3bitr3i 301 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅) ↔ (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| 9 | 1, 8 | imbi12i 350 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
| 10 | 9 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) |
| 11 | relxp 5677 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 12 | ssrel 5766 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅)))) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∪ ◡𝑅))) |
| 14 | r2al 3181 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | |
| 15 | 10, 13, 14 | 3bitr4i 303 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 ∪ cun 3929 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 × cxp 5657 ◡ccnv 5658 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 |
| This theorem is referenced by: istsr2 18599 letsr 18608 |
| Copyright terms: Public domain | W3C validator |