Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclci Structured version   Visualization version   GIF version

Theorem sigaclci 34128
Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
sigaclci (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)

Proof of Theorem sigaclci
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsigau 34123 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
21simprd 495 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
32simp2d 1143 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
43adantr 480 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
5 elpwi 4572 . . . . . . . . . . . 12 (𝐴 ∈ 𝒫 𝑆𝐴𝑆)
6 ssrexv 4018 . . . . . . . . . . . 12 (𝐴𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
75, 6syl 17 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
87ss2abdv 4031 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)})
9 isrnsigau 34123 . . . . . . . . . . . . 13 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆))))
109simprd 495 . . . . . . . . . . . 12 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆)))
1110simp2d 1143 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
12 uniiunlem 4052 . . . . . . . . . . . 12 (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1311, 12syl 17 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1411, 13mpbid 232 . . . . . . . . . 10 (𝑆 ran sigAlgebra → {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
158, 14sylan9ssr 3963 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
16 abrexexg 7941 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V)
17 elpwg 4568 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1816, 17syl 17 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1918adantl 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
2015, 19mpbird 257 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆)
212simp3d 1144 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2221adantr 480 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2320, 22jca 511 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
24 abrexdom2jm 32443 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴)
25 domtr 8980 . . . . . . . . . 10 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2624, 25sylan 580 . . . . . . . . 9 ((𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2726ex 412 . . . . . . . 8 (𝐴 ∈ 𝒫 𝑆 → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
2827adantl 481 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
29 breq1 5112 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → (𝑥 ≼ ω ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
30 unieq 4884 . . . . . . . . . 10 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → 𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
3130eleq1d 2814 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑥𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3229, 31imbi12d 344 . . . . . . . 8 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆)))
3332rspcva 3589 . . . . . . 7 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3423, 28, 33sylsyld 61 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
355adantl 481 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴𝑆)
3611adantr 480 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
37 ssralv 4017 . . . . . . . 8 (𝐴𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
3835, 36, 37sylc 65 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆)
39 dfiun2g 4996 . . . . . . 7 (∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
40 eleq1 2817 . . . . . . 7 ( 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4138, 39, 403syl 18 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4234, 41sylibrd 259 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
43 difeq2 4085 . . . . . . 7 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → ( 𝑆𝑥) = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)))
4443eleq1d 2814 . . . . . 6 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4544rspccv 3588 . . . . 5 (∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
464, 42, 45sylsyld 61 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4746adantrd 491 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4847imp 406 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)
49 simpr 484 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴 ∈ 𝒫 𝑆)
50 pwuni 4911 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
515, 50sstrdi 3961 . . . . . 6 (𝐴 ∈ 𝒫 𝑆𝐴 ⊆ 𝒫 𝑆)
52 iundifdifd 32496 . . . . . 6 (𝐴 ⊆ 𝒫 𝑆 → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5349, 51, 523syl 18 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5453adantld 490 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
55 eleq1 2817 . . . 4 ( 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5654, 55syl6 35 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)))
5756imp 406 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5848, 57mpbird 257 1 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3913  wss 3916  c0 4298  𝒫 cpw 4565   cuni 4873   cint 4912   ciun 4957   class class class wbr 5109  ran crn 5641  ωcom 7844  cdom 8918  sigAlgebracsiga 34104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-ac2 10422
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-card 9898  df-acn 9901  df-ac 10075  df-siga 34105
This theorem is referenced by:  difelsiga  34129  sigapisys  34151
  Copyright terms: Public domain W3C validator