Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclci Structured version   Visualization version   GIF version

Theorem sigaclci 32731
Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
sigaclci (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)

Proof of Theorem sigaclci
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsigau 32726 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
21simprd 496 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
32simp2d 1143 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
43adantr 481 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
5 elpwi 4567 . . . . . . . . . . . 12 (𝐴 ∈ 𝒫 𝑆𝐴𝑆)
6 ssrexv 4011 . . . . . . . . . . . 12 (𝐴𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
75, 6syl 17 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
87ss2abdv 4020 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)})
9 isrnsigau 32726 . . . . . . . . . . . . 13 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆))))
109simprd 496 . . . . . . . . . . . 12 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆)))
1110simp2d 1143 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
12 uniiunlem 4044 . . . . . . . . . . . 12 (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1311, 12syl 17 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1411, 13mpbid 231 . . . . . . . . . 10 (𝑆 ran sigAlgebra → {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
158, 14sylan9ssr 3958 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
16 abrexexg 7893 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V)
17 elpwg 4563 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1816, 17syl 17 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1918adantl 482 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
2015, 19mpbird 256 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆)
212simp3d 1144 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2221adantr 481 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2320, 22jca 512 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
24 abrexdom2jm 31434 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴)
25 domtr 8947 . . . . . . . . . 10 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2624, 25sylan 580 . . . . . . . . 9 ((𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2726ex 413 . . . . . . . 8 (𝐴 ∈ 𝒫 𝑆 → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
2827adantl 482 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
29 breq1 5108 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → (𝑥 ≼ ω ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
30 unieq 4876 . . . . . . . . . 10 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → 𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
3130eleq1d 2822 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑥𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3229, 31imbi12d 344 . . . . . . . 8 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆)))
3332rspcva 3579 . . . . . . 7 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3423, 28, 33sylsyld 61 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
355adantl 482 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴𝑆)
3611adantr 481 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
37 ssralv 4010 . . . . . . . 8 (𝐴𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
3835, 36, 37sylc 65 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆)
39 dfiun2g 4990 . . . . . . 7 (∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
40 eleq1 2825 . . . . . . 7 ( 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4138, 39, 403syl 18 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4234, 41sylibrd 258 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
43 difeq2 4076 . . . . . . 7 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → ( 𝑆𝑥) = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)))
4443eleq1d 2822 . . . . . 6 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4544rspccv 3578 . . . . 5 (∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
464, 42, 45sylsyld 61 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4746adantrd 492 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4847imp 407 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)
49 simpr 485 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴 ∈ 𝒫 𝑆)
50 pwuni 4906 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
515, 50sstrdi 3956 . . . . . 6 (𝐴 ∈ 𝒫 𝑆𝐴 ⊆ 𝒫 𝑆)
52 iundifdifd 31480 . . . . . 6 (𝐴 ⊆ 𝒫 𝑆 → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5349, 51, 523syl 18 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5453adantld 491 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
55 eleq1 2825 . . . 4 ( 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5654, 55syl6 35 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)))
5756imp 407 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5848, 57mpbird 256 1 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   cint 4907   ciun 4954   class class class wbr 5105  ran crn 5634  ωcom 7802  cdom 8881  sigAlgebracsiga 32707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-card 9875  df-acn 9878  df-ac 10052  df-siga 32708
This theorem is referenced by:  difelsiga  32732  sigapisys  32754
  Copyright terms: Public domain W3C validator