Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclci Structured version   Visualization version   GIF version

Theorem sigaclci 34113
Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
sigaclci (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)

Proof of Theorem sigaclci
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsigau 34108 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
21simprd 495 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
32simp2d 1142 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
43adantr 480 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
5 elpwi 4612 . . . . . . . . . . . 12 (𝐴 ∈ 𝒫 𝑆𝐴𝑆)
6 ssrexv 4065 . . . . . . . . . . . 12 (𝐴𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
75, 6syl 17 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
87ss2abdv 4076 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)})
9 isrnsigau 34108 . . . . . . . . . . . . 13 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆))))
109simprd 495 . . . . . . . . . . . 12 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆)))
1110simp2d 1142 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
12 uniiunlem 4097 . . . . . . . . . . . 12 (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1311, 12syl 17 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1411, 13mpbid 232 . . . . . . . . . 10 (𝑆 ran sigAlgebra → {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
158, 14sylan9ssr 4010 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
16 abrexexg 7984 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V)
17 elpwg 4608 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1816, 17syl 17 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1918adantl 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
2015, 19mpbird 257 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆)
212simp3d 1143 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2221adantr 480 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2320, 22jca 511 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
24 abrexdom2jm 32536 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴)
25 domtr 9046 . . . . . . . . . 10 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2624, 25sylan 580 . . . . . . . . 9 ((𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2726ex 412 . . . . . . . 8 (𝐴 ∈ 𝒫 𝑆 → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
2827adantl 481 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
29 breq1 5151 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → (𝑥 ≼ ω ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
30 unieq 4923 . . . . . . . . . 10 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → 𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
3130eleq1d 2824 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑥𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3229, 31imbi12d 344 . . . . . . . 8 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆)))
3332rspcva 3620 . . . . . . 7 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3423, 28, 33sylsyld 61 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
355adantl 481 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴𝑆)
3611adantr 480 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
37 ssralv 4064 . . . . . . . 8 (𝐴𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
3835, 36, 37sylc 65 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆)
39 dfiun2g 5035 . . . . . . 7 (∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
40 eleq1 2827 . . . . . . 7 ( 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4138, 39, 403syl 18 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4234, 41sylibrd 259 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
43 difeq2 4130 . . . . . . 7 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → ( 𝑆𝑥) = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)))
4443eleq1d 2824 . . . . . 6 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4544rspccv 3619 . . . . 5 (∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
464, 42, 45sylsyld 61 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4746adantrd 491 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4847imp 406 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)
49 simpr 484 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴 ∈ 𝒫 𝑆)
50 pwuni 4950 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
515, 50sstrdi 4008 . . . . . 6 (𝐴 ∈ 𝒫 𝑆𝐴 ⊆ 𝒫 𝑆)
52 iundifdifd 32582 . . . . . 6 (𝐴 ⊆ 𝒫 𝑆 → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5349, 51, 523syl 18 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5453adantld 490 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
55 eleq1 2827 . . . 4 ( 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5654, 55syl6 35 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)))
5756imp 406 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5848, 57mpbird 257 1 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951   ciun 4996   class class class wbr 5148  ran crn 5690  ωcom 7887  cdom 8982  sigAlgebracsiga 34089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-card 9977  df-acn 9980  df-ac 10154  df-siga 34090
This theorem is referenced by:  difelsiga  34114  sigapisys  34136
  Copyright terms: Public domain W3C validator