Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclci Structured version   Visualization version   GIF version

Theorem sigaclci 30520
Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
sigaclci (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)

Proof of Theorem sigaclci
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsigau 30515 . . . . . . . 8 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
21simprd 485 . . . . . . 7 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
32simp2d 1166 . . . . . 6 (𝑆 ran sigAlgebra → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
43adantr 468 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆)
5 elpwi 4361 . . . . . . . . . . . 12 (𝐴 ∈ 𝒫 𝑆𝐴𝑆)
6 ssrexv 3864 . . . . . . . . . . . 12 (𝐴𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
75, 6syl 17 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → (∃𝑧𝐴 𝑦 = ( 𝑆𝑧) → ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)))
87ss2abdv 3872 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)})
9 isrnsigau 30515 . . . . . . . . . . . . 13 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆))))
109simprd 485 . . . . . . . . . . . 12 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆(𝑧 ≼ ω → 𝑧𝑆)))
1110simp2d 1166 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
12 uniiunlem 3889 . . . . . . . . . . . 12 (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1311, 12syl 17 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 ↔ {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1411, 13mpbid 223 . . . . . . . . . 10 (𝑆 ran sigAlgebra → {𝑦 ∣ ∃𝑧𝑆 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
158, 14sylan9ssr 3812 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆)
16 abrexexg 7370 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V)
17 elpwg 4359 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ V → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1816, 17syl 17 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
1918adantl 469 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ⊆ 𝑆))
2015, 19mpbird 248 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆)
212simp3d 1167 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2221adantr 468 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
2320, 22jca 503 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
24 abrexdom2jm 29671 . . . . . . . . . 10 (𝐴 ∈ 𝒫 𝑆 → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴)
25 domtr 8245 . . . . . . . . . 10 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ 𝐴𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2624, 25sylan 571 . . . . . . . . 9 ((𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω)
2726ex 399 . . . . . . . 8 (𝐴 ∈ 𝒫 𝑆 → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
2827adantl 469 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
29 breq1 4847 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → (𝑥 ≼ ω ↔ {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω))
30 unieq 4638 . . . . . . . . . 10 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → 𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
3130eleq1d 2870 . . . . . . . . 9 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑥𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3229, 31imbi12d 335 . . . . . . . 8 (𝑥 = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆)))
3332rspcva 3500 . . . . . . 7 (({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝒫 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → ({𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
3423, 28, 33sylsyld 61 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
355adantl 469 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴𝑆)
3611adantr 468 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆)
37 ssralv 3863 . . . . . . . 8 (𝐴𝑆 → (∀𝑧𝑆 ( 𝑆𝑧) ∈ 𝑆 → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
3835, 36, 37sylc 65 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆)
39 dfiun2g 4744 . . . . . . 7 (∀𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)})
40 eleq1 2873 . . . . . . 7 ( 𝑧𝐴 ( 𝑆𝑧) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4138, 39, 403syl 18 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 {𝑦 ∣ ∃𝑧𝐴 𝑦 = ( 𝑆𝑧)} ∈ 𝑆))
4234, 41sylibrd 250 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆))
43 difeq2 3921 . . . . . . 7 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → ( 𝑆𝑥) = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)))
4443eleq1d 2870 . . . . . 6 (𝑥 = 𝑧𝐴 ( 𝑆𝑧) → (( 𝑆𝑥) ∈ 𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4544rspccv 3499 . . . . 5 (∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 → ( 𝑧𝐴 ( 𝑆𝑧) ∈ 𝑆 → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
464, 42, 45sylsyld 61 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≼ ω → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4746adantrd 481 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
4847imp 395 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)
49 simpr 473 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → 𝐴 ∈ 𝒫 𝑆)
50 pwuni 4668 . . . . . . 7 𝑆 ⊆ 𝒫 𝑆
515, 50syl6ss 3810 . . . . . 6 (𝐴 ∈ 𝒫 𝑆𝐴 ⊆ 𝒫 𝑆)
52 iundifdifd 29705 . . . . . 6 (𝐴 ⊆ 𝒫 𝑆 → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5349, 51, 523syl 18 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → (𝐴 ≠ ∅ → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
5453adantld 480 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧))))
55 eleq1 2873 . . . 4 ( 𝐴 = ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5654, 55syl6 35 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) → ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆)))
5756imp 395 . 2 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → ( 𝐴𝑆 ↔ ( 𝑆 𝑧𝐴 ( 𝑆𝑧)) ∈ 𝑆))
5848, 57mpbird 248 1 (((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆) ∧ (𝐴 ≼ ω ∧ 𝐴 ≠ ∅)) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  {cab 2792  wne 2978  wral 3096  wrex 3097  Vcvv 3391  cdif 3766  wss 3769  c0 4116  𝒫 cpw 4351   cuni 4630   cint 4669   ciun 4712   class class class wbr 4844  ran crn 5312  ωcom 7295  cdom 8190  sigAlgebracsiga 30495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-ac2 9570
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-card 9048  df-acn 9051  df-ac 9222  df-siga 30496
This theorem is referenced by:  difelsiga  30521  sigapisys  30543
  Copyright terms: Public domain W3C validator