| Step | Hyp | Ref
| Expression |
| 1 | | sseq2 3985 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ∪ 𝐴)) |
| 2 | 1 | biimprcd 250 |
. . . . . . 7
⊢ (𝑦 ⊆ ∪ 𝐴
→ (𝑥 = ∪ 𝐴
→ 𝑦 ⊆ 𝑥)) |
| 3 | 2 | reximdv 3155 |
. . . . . 6
⊢ (𝑦 ⊆ ∪ 𝐴
→ (∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
| 4 | 3 | com12 32 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 → (𝑦 ⊆ ∪ 𝐴 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
| 5 | | ssiun 5022 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 𝑥) |
| 6 | | uniiun 5034 |
. . . . . 6
⊢ ∪ 𝐴 =
∪ 𝑥 ∈ 𝐴 𝑥 |
| 7 | 5, 6 | sseqtrrdi 4000 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝐴) |
| 8 | 4, 7 | impbid1 225 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 → (𝑦 ⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
| 9 | | velpw 4580 |
. . . 4
⊢ (𝑦 ∈ 𝒫 ∪ 𝐴
↔ 𝑦 ⊆ ∪ 𝐴) |
| 10 | | eliun 4971 |
. . . . 5
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
| 11 | | velpw 4580 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) |
| 12 | 11 | rexbii 3083 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 13 | 10, 12 | bitri 275 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 14 | 8, 9, 13 | 3bitr4g 314 |
. . 3
⊢
(∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 → (𝑦 ∈ 𝒫 ∪ 𝐴
↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥)) |
| 15 | 14 | eqrdv 2733 |
. 2
⊢
(∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 → 𝒫 ∪ 𝐴 =
∪ 𝑥 ∈ 𝐴 𝒫 𝑥) |
| 16 | | ssid 3981 |
. . . . 5
⊢ ∪ 𝐴
⊆ ∪ 𝐴 |
| 17 | | iunpw.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
| 18 | 17 | uniex 7733 |
. . . . . . 7
⊢ ∪ 𝐴
∈ V |
| 19 | 18 | elpw 4579 |
. . . . . 6
⊢ (∪ 𝐴
∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ⊆ ∪ 𝐴) |
| 20 | | eleq2 2823 |
. . . . . 6
⊢
(𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → (∪ 𝐴 ∈ 𝒫 ∪ 𝐴
↔ ∪ 𝐴 ∈ ∪
𝑥 ∈ 𝐴 𝒫 𝑥)) |
| 21 | 19, 20 | bitr3id 285 |
. . . . 5
⊢
(𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → (∪ 𝐴 ⊆ ∪ 𝐴
↔ ∪ 𝐴 ∈ ∪
𝑥 ∈ 𝐴 𝒫 𝑥)) |
| 22 | 16, 21 | mpbii 233 |
. . . 4
⊢
(𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) |
| 23 | | eliun 4971 |
. . . 4
⊢ (∪ 𝐴
∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥) |
| 24 | 22, 23 | sylib 218 |
. . 3
⊢
(𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥) |
| 25 | | elssuni 4913 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) |
| 26 | | elpwi 4582 |
. . . . . . 7
⊢ (∪ 𝐴
∈ 𝒫 𝑥 →
∪ 𝐴 ⊆ 𝑥) |
| 27 | 25, 26 | anim12i 613 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥) → (𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴
⊆ 𝑥)) |
| 28 | | eqss 3974 |
. . . . . 6
⊢ (𝑥 = ∪
𝐴 ↔ (𝑥 ⊆ ∪ 𝐴
∧ ∪ 𝐴 ⊆ 𝑥)) |
| 29 | 27, 28 | sylibr 234 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥) → 𝑥 = ∪ 𝐴) |
| 30 | 29 | ex 412 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ∈ 𝒫 𝑥 → 𝑥 = ∪ 𝐴)) |
| 31 | 30 | reximia 3071 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∪ 𝐴
∈ 𝒫 𝑥 →
∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴) |
| 32 | 24, 31 | syl 17 |
. 2
⊢
(𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴) |
| 33 | 15, 32 | impbii 209 |
1
⊢
(∃𝑥 ∈
𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 =
∪ 𝑥 ∈ 𝐴 𝒫 𝑥) |