MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpw Structured version   Visualization version   GIF version

Theorem iunpw 7486
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Hypothesis
Ref Expression
iunpw.1 𝐴 ∈ V
Assertion
Ref Expression
iunpw (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3997 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦𝑥𝑦 𝐴))
21biimprcd 251 . . . . . . 7 (𝑦 𝐴 → (𝑥 = 𝐴𝑦𝑥))
32reximdv 3278 . . . . . 6 (𝑦 𝐴 → (∃𝑥𝐴 𝑥 = 𝐴 → ∃𝑥𝐴 𝑦𝑥))
43com12 32 . . . . 5 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 → ∃𝑥𝐴 𝑦𝑥))
5 ssiun 4967 . . . . . 6 (∃𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥)
6 uniiun 4979 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
75, 6sseqtrrdi 4022 . . . . 5 (∃𝑥𝐴 𝑦𝑥𝑦 𝐴)
84, 7impbid1 226 . . . 4 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥))
9 velpw 4550 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
10 eliun 4921 . . . . 5 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
11 velpw 4550 . . . . . 6 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
1211rexbii 3252 . . . . 5 (∃𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1310, 12bitri 276 . . . 4 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
148, 9, 133bitr4g 315 . . 3 (∃𝑥𝐴 𝑥 = 𝐴 → (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥))
1514eqrdv 2824 . 2 (∃𝑥𝐴 𝑥 = 𝐴 → 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
16 ssid 3993 . . . . 5 𝐴 𝐴
17 iunpw.1 . . . . . . . 8 𝐴 ∈ V
1817uniex 7459 . . . . . . 7 𝐴 ∈ V
1918elpw 4549 . . . . . 6 ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝐴)
20 eleq2 2906 . . . . . 6 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 ∈ 𝒫 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2119, 20syl5bbr 286 . . . . 5 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ( 𝐴 𝐴 𝐴 𝑥𝐴 𝒫 𝑥))
2216, 21mpbii 234 . . . 4 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 𝐴 𝑥𝐴 𝒫 𝑥)
23 eliun 4921 . . . 4 ( 𝐴 𝑥𝐴 𝒫 𝑥 ↔ ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
2422, 23sylib 219 . . 3 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥)
25 elssuni 4866 . . . . . . 7 (𝑥𝐴𝑥 𝐴)
26 elpwi 4554 . . . . . . 7 ( 𝐴 ∈ 𝒫 𝑥 𝐴𝑥)
2725, 26anim12i 612 . . . . . 6 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → (𝑥 𝐴 𝐴𝑥))
28 eqss 3986 . . . . . 6 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
2927, 28sylibr 235 . . . . 5 ((𝑥𝐴 𝐴 ∈ 𝒫 𝑥) → 𝑥 = 𝐴)
3029ex 413 . . . 4 (𝑥𝐴 → ( 𝐴 ∈ 𝒫 𝑥𝑥 = 𝐴))
3130reximia 3247 . . 3 (∃𝑥𝐴 𝐴 ∈ 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3224, 31syl 17 . 2 (𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥 → ∃𝑥𝐴 𝑥 = 𝐴)
3315, 32impbii 210 1 (∃𝑥𝐴 𝑥 = 𝐴 ↔ 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  Vcvv 3500  wss 3940  𝒫 cpw 4542   cuni 4837   ciun 4917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-v 3502  df-in 3947  df-ss 3956  df-pw 4544  df-uni 4838  df-iun 4919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator