![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuncl | Structured version Visualization version GIF version |
Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
Ref | Expression |
---|---|
pwuncl | ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexg 7732 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ V) | |
2 | elpwi 4608 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ⊆ 𝑋) | |
3 | elpwi 4608 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝑋 → 𝐵 ⊆ 𝑋) | |
4 | unss 4183 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) | |
5 | 4 | biimpi 215 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
6 | 2, 3, 5 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
7 | 1, 6 | elpwd 4607 | 1 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 ⊆ wss 3947 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-pw 4603 df-sn 4628 df-pr 4630 df-uni 4908 |
This theorem is referenced by: naddunif 8688 fiin 9413 fpwipodrs 18489 pwmnd 18814 cutlt 27408 clsk1indlem3 42779 isotone1 42784 |
Copyright terms: Public domain | W3C validator |