MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuncl Structured version   Visualization version   GIF version

Theorem pwuncl 7712
Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.)
Assertion
Ref Expression
pwuncl ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)

Proof of Theorem pwuncl
StepHypRef Expression
1 unexg 7685 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ V)
2 elpwi 4558 . . 3 (𝐴 ∈ 𝒫 𝑋𝐴𝑋)
3 elpwi 4558 . . 3 (𝐵 ∈ 𝒫 𝑋𝐵𝑋)
4 unss 4139 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
54biimpi 216 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
62, 3, 5syl2an 596 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ⊆ 𝑋)
71, 6elpwd 4557 1 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437  cun 3896  wss 3898  𝒫 cpw 4551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4861
This theorem is referenced by:  naddunif  8617  fiin  9317  fpwipodrs  18454  pwmnd  18853  cutlt  27896  clsk1indlem3  44200  isotone1  44205  isgrtri  48105
  Copyright terms: Public domain W3C validator