MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuncl Structured version   Visualization version   GIF version

Theorem pwuncl 7682
Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.)
Assertion
Ref Expression
pwuncl ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)

Proof of Theorem pwuncl
StepHypRef Expression
1 unexg 7661 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ V)
2 elpwi 4554 . . 3 (𝐴 ∈ 𝒫 𝑋𝐴𝑋)
3 elpwi 4554 . . 3 (𝐵 ∈ 𝒫 𝑋𝐵𝑋)
4 unss 4131 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
54biimpi 215 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
62, 3, 5syl2an 596 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ⊆ 𝑋)
71, 6elpwd 4553 1 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  Vcvv 3441  cun 3896  wss 3898  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4853
This theorem is referenced by:  fiin  9279  fpwipodrs  18355  pwmnd  18672  clsk1indlem3  41982  isotone1  41987
  Copyright terms: Public domain W3C validator