Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuncl Structured version   Visualization version   GIF version

Theorem pwuncl 7491
 Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.)
Assertion
Ref Expression
pwuncl ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)

Proof of Theorem pwuncl
StepHypRef Expression
1 unexg 7470 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ V)
2 elpwi 4503 . . 3 (𝐴 ∈ 𝒫 𝑋𝐴𝑋)
3 elpwi 4503 . . 3 (𝐵 ∈ 𝒫 𝑋𝐵𝑋)
4 unss 4089 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
54biimpi 219 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
62, 3, 5syl2an 598 . 2 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ⊆ 𝑋)
71, 6elpwd 4502 1 ((𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋) → (𝐴𝐵) ∈ 𝒫 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  Vcvv 3409   ∪ cun 3856   ⊆ wss 3858  𝒫 cpw 4494 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-pw 4496  df-sn 4523  df-pr 4525  df-uni 4799 This theorem is referenced by:  fiin  8919  fpwipodrs  17840  pwmnd  18168  madebdayim  33627  clsk1indlem3  41119  isotone1  41124
 Copyright terms: Public domain W3C validator