| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuncl | Structured version Visualization version GIF version | ||
| Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwuncl | ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexg 7699 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ V) | |
| 2 | elpwi 4566 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | elpwi 4566 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝑋 → 𝐵 ⊆ 𝑋) | |
| 4 | unss 4149 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) | |
| 5 | 4 | biimpi 216 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 6 | 2, 3, 5 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 7 | 1, 6 | elpwd 4565 | 1 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 |
| This theorem is referenced by: naddunif 8634 fiin 9349 fpwipodrs 18475 pwmnd 18840 cutlt 27816 clsk1indlem3 44005 isotone1 44010 isgrtri 47915 |
| Copyright terms: Public domain | W3C validator |