| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuncl | Structured version Visualization version GIF version | ||
| Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
| Ref | Expression |
|---|---|
| pwuncl | ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexg 7742 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ V) | |
| 2 | elpwi 4587 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | elpwi 4587 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝑋 → 𝐵 ⊆ 𝑋) | |
| 4 | unss 4170 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) | |
| 5 | 4 | biimpi 216 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 6 | 2, 3, 5 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 7 | 1, 6 | elpwd 4586 | 1 ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: naddunif 8710 fiin 9439 fpwipodrs 18555 pwmnd 18920 cutlt 27897 clsk1indlem3 44034 isotone1 44039 isgrtri 47922 |
| Copyright terms: Public domain | W3C validator |