![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > djussxp2 | Structured version Visualization version GIF version |
Description: Stronger version of djussxp 5859. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
Ref | Expression |
---|---|
djussxp2 | ⊢ ∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | nfiu1 5032 | . . . 4 ⊢ Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 | |
3 | 1, 2 | nfxp 5722 | . . 3 ⊢ Ⅎ𝑘(𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
4 | 3 | iunssf 5049 | . 2 ⊢ (∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) ↔ ∀𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) |
5 | snssi 4813 | . . 3 ⊢ (𝑘 ∈ 𝐴 → {𝑘} ⊆ 𝐴) | |
6 | ssiun2 5052 | . . 3 ⊢ (𝑘 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵) | |
7 | xpss12 5704 | . . 3 ⊢ (({𝑘} ⊆ 𝐴 ∧ 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵) → ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝑘 ∈ 𝐴 → ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) |
9 | 4, 8 | mprgbir 3066 | 1 ⊢ ∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 {csn 4631 ∪ ciun 4996 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-sn 4632 df-iun 4998 df-opab 5211 df-xp 5695 |
This theorem is referenced by: 2ndresdju 32666 gsumpart 33043 |
Copyright terms: Public domain | W3C validator |