Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djussxp2 Structured version   Visualization version   GIF version

Theorem djussxp2 32665
Description: Stronger version of djussxp 5859. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
djussxp2 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem djussxp2
StepHypRef Expression
1 nfcv 2903 . . . 4 𝑘𝐴
2 nfiu1 5032 . . . 4 𝑘 𝑘𝐴 𝐵
31, 2nfxp 5722 . . 3 𝑘(𝐴 × 𝑘𝐴 𝐵)
43iunssf 5049 . 2 ( 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵) ↔ ∀𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
5 snssi 4813 . . 3 (𝑘𝐴 → {𝑘} ⊆ 𝐴)
6 ssiun2 5052 . . 3 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
7 xpss12 5704 . . 3 (({𝑘} ⊆ 𝐴𝐵 𝑘𝐴 𝐵) → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
85, 6, 7syl2anc 584 . 2 (𝑘𝐴 → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
94, 8mprgbir 3066 1 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3963  {csn 4631   ciun 4996   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-ss 3980  df-sn 4632  df-iun 4998  df-opab 5211  df-xp 5695
This theorem is referenced by:  2ndresdju  32666  gsumpart  33043
  Copyright terms: Public domain W3C validator