Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > djussxp2 | Structured version Visualization version GIF version |
Description: Stronger version of djussxp 5791. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
Ref | Expression |
---|---|
djussxp2 | ⊢ ∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | nfiu1 4979 | . . . 4 ⊢ Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 | |
3 | 1, 2 | nfxp 5657 | . . 3 ⊢ Ⅎ𝑘(𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
4 | 3 | iunssf 4995 | . 2 ⊢ (∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) ↔ ∀𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) |
5 | snssi 4759 | . . 3 ⊢ (𝑘 ∈ 𝐴 → {𝑘} ⊆ 𝐴) | |
6 | ssiun2 4998 | . . 3 ⊢ (𝑘 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵) | |
7 | xpss12 5639 | . . 3 ⊢ (({𝑘} ⊆ 𝐴 ∧ 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵) → ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) | |
8 | 5, 6, 7 | syl2anc 585 | . 2 ⊢ (𝑘 ∈ 𝐴 → ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵)) |
9 | 4, 8 | mprgbir 3069 | 1 ⊢ ∪ 𝑘 ∈ 𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × ∪ 𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3901 {csn 4577 ∪ ciun 4945 × cxp 5622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-v 3444 df-in 3908 df-ss 3918 df-sn 4578 df-iun 4947 df-opab 5159 df-xp 5630 |
This theorem is referenced by: 2ndresdju 31271 gsumpart 31600 |
Copyright terms: Public domain | W3C validator |