Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djussxp2 Structured version   Visualization version   GIF version

Theorem djussxp2 32666
Description: Stronger version of djussxp 5870. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
djussxp2 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem djussxp2
StepHypRef Expression
1 nfcv 2908 . . . 4 𝑘𝐴
2 nfiu1 5050 . . . 4 𝑘 𝑘𝐴 𝐵
31, 2nfxp 5733 . . 3 𝑘(𝐴 × 𝑘𝐴 𝐵)
43iunssf 5067 . 2 ( 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵) ↔ ∀𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
5 snssi 4833 . . 3 (𝑘𝐴 → {𝑘} ⊆ 𝐴)
6 ssiun2 5070 . . 3 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
7 xpss12 5715 . . 3 (({𝑘} ⊆ 𝐴𝐵 𝑘𝐴 𝐵) → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
85, 6, 7syl2anc 583 . 2 (𝑘𝐴 → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
94, 8mprgbir 3074 1 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3976  {csn 4648   ciun 5015   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-sn 4649  df-iun 5017  df-opab 5229  df-xp 5706
This theorem is referenced by:  2ndresdju  32667  gsumpart  33038
  Copyright terms: Public domain W3C validator