Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djussxp2 Structured version   Visualization version   GIF version

Theorem djussxp2 30985
Description: Stronger version of djussxp 5754. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
djussxp2 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem djussxp2
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑘𝐴
2 nfiu1 4958 . . . 4 𝑘 𝑘𝐴 𝐵
31, 2nfxp 5622 . . 3 𝑘(𝐴 × 𝑘𝐴 𝐵)
43iunssf 4974 . 2 ( 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵) ↔ ∀𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
5 snssi 4741 . . 3 (𝑘𝐴 → {𝑘} ⊆ 𝐴)
6 ssiun2 4977 . . 3 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
7 xpss12 5604 . . 3 (({𝑘} ⊆ 𝐴𝐵 𝑘𝐴 𝐵) → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
85, 6, 7syl2anc 584 . 2 (𝑘𝐴 → ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵))
94, 8mprgbir 3079 1 𝑘𝐴 ({𝑘} × 𝐵) ⊆ (𝐴 × 𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3887  {csn 4561   ciun 4924   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-sn 4562  df-iun 4926  df-opab 5137  df-xp 5595
This theorem is referenced by:  2ndresdju  30986  gsumpart  31315
  Copyright terms: Public domain W3C validator