![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunmapss | Structured version Visualization version GIF version |
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
iunmapss.x | ⊢ Ⅎ𝑥𝜑 |
iunmapss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
iunmapss.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
iunmapss | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunmapss.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iunmapss.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | iunmapss.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
4 | 3 | ex 412 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊)) |
5 | 1, 4 | ralrimi 3248 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
6 | iunexg 7949 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
7 | 2, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ssiun2 5043 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
11 | mapss 8885 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | |
12 | 8, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
13 | 12 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶))) |
14 | 1, 13 | ralrimi 3248 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
15 | nfiu1 5024 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
16 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥 ↑m | |
17 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
18 | 15, 16, 17 | nfov 7435 | . . 3 ⊢ Ⅎ𝑥(∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) |
19 | 18 | iunssf 5040 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
20 | 14, 19 | sylibr 233 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 ∪ ciun 4990 (class class class)co 7405 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 |
This theorem is referenced by: iunmapsn 44485 |
Copyright terms: Public domain | W3C validator |