Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapss Structured version   Visualization version   GIF version

Theorem iunmapss 45122
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapss.x 𝑥𝜑
iunmapss.a (𝜑𝐴𝑉)
iunmapss.b ((𝜑𝑥𝐴) → 𝐵𝑊)
Assertion
Ref Expression
iunmapss (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunmapss
StepHypRef Expression
1 iunmapss.x . . 3 𝑥𝜑
2 iunmapss.a . . . . . . 7 (𝜑𝐴𝑉)
3 iunmapss.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑊)
43ex 412 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵𝑊))
51, 4ralrimi 3263 . . . . . . 7 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
6 iunexg 8004 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
72, 5, 6syl2anc 583 . . . . . 6 (𝜑 𝑥𝐴 𝐵 ∈ V)
87adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
9 ssiun2 5070 . . . . . 6 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
109adantl 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
11 mapss 8947 . . . . 5 (( 𝑥𝐴 𝐵 ∈ V ∧ 𝐵 𝑥𝐴 𝐵) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
128, 10, 11syl2anc 583 . . . 4 ((𝜑𝑥𝐴) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
1312ex 412 . . 3 (𝜑 → (𝑥𝐴 → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶)))
141, 13ralrimi 3263 . 2 (𝜑 → ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
15 nfiu1 5050 . . . 4 𝑥 𝑥𝐴 𝐵
16 nfcv 2908 . . . 4 𝑥m
17 nfcv 2908 . . . 4 𝑥𝐶
1815, 16, 17nfov 7478 . . 3 𝑥( 𝑥𝐴 𝐵m 𝐶)
1918iunssf 5067 . 2 ( 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶) ↔ ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
2014, 19sylibr 234 1 (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1781  wcel 2108  wral 3067  Vcvv 3488  wss 3976   ciun 5015  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  iunmapsn  45124
  Copyright terms: Public domain W3C validator