![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunmapss | Structured version Visualization version GIF version |
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
iunmapss.x | ⊢ Ⅎ𝑥𝜑 |
iunmapss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
iunmapss.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
iunmapss | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunmapss.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iunmapss.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | iunmapss.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
4 | 3 | ex 414 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊)) |
5 | 1, 4 | ralrimi 3255 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
6 | iunexg 7950 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
7 | 2, 5, 6 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
8 | 7 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ssiun2 5051 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
10 | 9 | adantl 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
11 | mapss 8883 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | |
12 | 8, 10, 11 | syl2anc 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
13 | 12 | ex 414 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶))) |
14 | 1, 13 | ralrimi 3255 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
15 | nfiu1 5032 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
16 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥 ↑m | |
17 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
18 | 15, 16, 17 | nfov 7439 | . . 3 ⊢ Ⅎ𝑥(∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) |
19 | 18 | iunssf 5048 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
20 | 14, 19 | sylibr 233 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3949 ∪ ciun 4998 (class class class)co 7409 ↑m cmap 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 |
This theorem is referenced by: iunmapsn 43916 |
Copyright terms: Public domain | W3C validator |