Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunmapss | Structured version Visualization version GIF version |
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
iunmapss.x | ⊢ Ⅎ𝑥𝜑 |
iunmapss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
iunmapss.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
iunmapss | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunmapss.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iunmapss.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | iunmapss.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
4 | 3 | ex 412 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊)) |
5 | 1, 4 | ralrimi 3141 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
6 | iunexg 7792 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
7 | 2, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ssiun2 4981 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
11 | mapss 8651 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | |
12 | 8, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
13 | 12 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶))) |
14 | 1, 13 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
15 | nfiu1 4963 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
16 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥 ↑m | |
17 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
18 | 15, 16, 17 | nfov 7298 | . . 3 ⊢ Ⅎ𝑥(∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) |
19 | 18 | iunssf 4978 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
20 | 14, 19 | sylibr 233 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ⊆ wss 3891 ∪ ciun 4929 (class class class)co 7268 ↑m cmap 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-map 8591 |
This theorem is referenced by: iunmapsn 42710 |
Copyright terms: Public domain | W3C validator |