Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapss Structured version   Visualization version   GIF version

Theorem iunmapss 45158
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapss.x 𝑥𝜑
iunmapss.a (𝜑𝐴𝑉)
iunmapss.b ((𝜑𝑥𝐴) → 𝐵𝑊)
Assertion
Ref Expression
iunmapss (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunmapss
StepHypRef Expression
1 iunmapss.x . . 3 𝑥𝜑
2 iunmapss.a . . . . . . 7 (𝜑𝐴𝑉)
3 iunmapss.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑊)
43ex 412 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵𝑊))
51, 4ralrimi 3255 . . . . . . 7 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
6 iunexg 7987 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
72, 5, 6syl2anc 584 . . . . . 6 (𝜑 𝑥𝐴 𝐵 ∈ V)
87adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
9 ssiun2 5052 . . . . . 6 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
109adantl 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
11 mapss 8928 . . . . 5 (( 𝑥𝐴 𝐵 ∈ V ∧ 𝐵 𝑥𝐴 𝐵) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
128, 10, 11syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
1312ex 412 . . 3 (𝜑 → (𝑥𝐴 → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶)))
141, 13ralrimi 3255 . 2 (𝜑 → ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
15 nfiu1 5032 . . . 4 𝑥 𝑥𝐴 𝐵
16 nfcv 2903 . . . 4 𝑥m
17 nfcv 2903 . . . 4 𝑥𝐶
1815, 16, 17nfov 7461 . . 3 𝑥( 𝑥𝐴 𝐵m 𝐶)
1918iunssf 5049 . 2 ( 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶) ↔ ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
2014, 19sylibr 234 1 (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1780  wcel 2106  wral 3059  Vcvv 3478  wss 3963   ciun 4996  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867
This theorem is referenced by:  iunmapsn  45160
  Copyright terms: Public domain W3C validator