Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapss Structured version   Visualization version   GIF version

Theorem iunmapss 45196
Description: The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapss.x 𝑥𝜑
iunmapss.a (𝜑𝐴𝑉)
iunmapss.b ((𝜑𝑥𝐴) → 𝐵𝑊)
Assertion
Ref Expression
iunmapss (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunmapss
StepHypRef Expression
1 iunmapss.x . . 3 𝑥𝜑
2 iunmapss.a . . . . . . 7 (𝜑𝐴𝑉)
3 iunmapss.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑊)
43ex 412 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵𝑊))
51, 4ralrimi 3227 . . . . . . 7 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
6 iunexg 7905 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
72, 5, 6syl2anc 584 . . . . . 6 (𝜑 𝑥𝐴 𝐵 ∈ V)
87adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
9 ssiun2 4999 . . . . . 6 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
109adantl 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
11 mapss 8823 . . . . 5 (( 𝑥𝐴 𝐵 ∈ V ∧ 𝐵 𝑥𝐴 𝐵) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
128, 10, 11syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
1312ex 412 . . 3 (𝜑 → (𝑥𝐴 → (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶)))
141, 13ralrimi 3227 . 2 (𝜑 → ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
15 nfiu1 4980 . . . 4 𝑥 𝑥𝐴 𝐵
16 nfcv 2891 . . . 4 𝑥m
17 nfcv 2891 . . . 4 𝑥𝐶
1815, 16, 17nfov 7383 . . 3 𝑥( 𝑥𝐴 𝐵m 𝐶)
1918iunssf 4996 . 2 ( 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶) ↔ ∀𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
2014, 19sylibr 234 1 (𝜑 𝑥𝐴 (𝐵m 𝐶) ⊆ ( 𝑥𝐴 𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3044  Vcvv 3438  wss 3905   ciun 4944  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by:  iunmapsn  45198
  Copyright terms: Public domain W3C validator