| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxpssiun1 | Structured version Visualization version GIF version | ||
| Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| iunxpssiun1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| iunxpssiun1 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiun2 5013 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 3 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3888 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3878 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 3, 4, 5 | cbviun 5002 | . . . . . 6 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
| 7 | 2, 6 | sseqtrdi 3989 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | iunxpssiun1.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ⊆ 𝐸) | |
| 9 | xpss12 5655 | . . . . 5 ⊢ ((𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝐶 ⊆ 𝐸) → (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 11 | 10 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 12 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 12, 4 | nfiun 4989 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
| 14 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
| 15 | 13, 14 | nfxp 5673 | . . . 4 ⊢ Ⅎ𝑥(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) |
| 16 | 15 | iunssf 5010 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) ↔ ∀𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 17 | 11, 16 | sylibr 234 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 18 | 6 | xpeq1i 5666 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) |
| 19 | 17, 18 | sseqtrrdi 3990 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⦋csb 3864 ⊆ wss 3916 ∪ ciun 4957 × cxp 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-sbc 3756 df-csb 3865 df-ss 3933 df-iun 4959 df-opab 5172 df-xp 5646 |
| This theorem is referenced by: fldextrspunlsplem 33674 |
| Copyright terms: Public domain | W3C validator |