| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxpssiun1 | Structured version Visualization version GIF version | ||
| Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| iunxpssiun1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| iunxpssiun1 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiun2 5027 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 3 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3903 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3893 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 3, 4, 5 | cbviun 5016 | . . . . . 6 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
| 7 | 2, 6 | sseqtrdi 4004 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | iunxpssiun1.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ⊆ 𝐸) | |
| 9 | xpss12 5680 | . . . . 5 ⊢ ((𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝐶 ⊆ 𝐸) → (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 11 | 10 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 12 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 12, 4 | nfiun 5003 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
| 14 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
| 15 | 13, 14 | nfxp 5698 | . . . 4 ⊢ Ⅎ𝑥(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) |
| 16 | 15 | iunssf 5024 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) ↔ ∀𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 17 | 11, 16 | sylibr 234 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸)) |
| 18 | 6 | xpeq1i 5691 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 × 𝐸) |
| 19 | 17, 18 | sseqtrrdi 4005 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ⦋csb 3879 ⊆ wss 3931 ∪ ciun 4971 × cxp 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3465 df-sbc 3771 df-csb 3880 df-ss 3948 df-iun 4973 df-opab 5186 df-xp 5671 |
| This theorem is referenced by: fldextrspunlsplem 33665 |
| Copyright terms: Public domain | W3C validator |