Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxpssiun1 Structured version   Visualization version   GIF version

Theorem iunxpssiun1 32503
Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypothesis
Ref Expression
iunxpssiun1.1 ((𝜑𝑥𝐴) → 𝐶𝐸)
Assertion
Ref Expression
iunxpssiun1 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑥𝐴 𝐵 × 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐸   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iunxpssiun1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun2 5013 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
21adantl 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3 nfcv 2892 . . . . . . 7 𝑦𝐵
4 nfcsb1v 3888 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3878 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbviun 5002 . . . . . 6 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
72, 6sseqtrdi 3989 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 𝑦𝐴 𝑦 / 𝑥𝐵)
8 iunxpssiun1.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐸)
9 xpss12 5655 . . . . 5 ((𝐵 𝑦𝐴 𝑦 / 𝑥𝐵𝐶𝐸) → (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
107, 8, 9syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
1110ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
12 nfcv 2892 . . . . . 6 𝑥𝐴
1312, 4nfiun 4989 . . . . 5 𝑥 𝑦𝐴 𝑦 / 𝑥𝐵
14 nfcv 2892 . . . . 5 𝑥𝐸
1513, 14nfxp 5673 . . . 4 𝑥( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸)
1615iunssf 5010 . . 3 ( 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸) ↔ ∀𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
1711, 16sylibr 234 . 2 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
186xpeq1i 5666 . 2 ( 𝑥𝐴 𝐵 × 𝐸) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸)
1917, 18sseqtrrdi 3990 1 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑥𝐴 𝐵 × 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  csb 3864  wss 3916   ciun 4957   × cxp 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-sbc 3756  df-csb 3865  df-ss 3933  df-iun 4959  df-opab 5172  df-xp 5646
This theorem is referenced by:  fldextrspunlsplem  33674
  Copyright terms: Public domain W3C validator