Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxpssiun1 Structured version   Visualization version   GIF version

Theorem iunxpssiun1 32570
Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypothesis
Ref Expression
iunxpssiun1.1 ((𝜑𝑥𝐴) → 𝐶𝐸)
Assertion
Ref Expression
iunxpssiun1 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑥𝐴 𝐵 × 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐸   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iunxpssiun1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssiun2 5045 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
21adantl 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3 nfcv 2904 . . . . . . 7 𝑦𝐵
4 nfcsb1v 3922 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3912 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbviun 5034 . . . . . 6 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
72, 6sseqtrdi 4023 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 𝑦𝐴 𝑦 / 𝑥𝐵)
8 iunxpssiun1.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐸)
9 xpss12 5698 . . . . 5 ((𝐵 𝑦𝐴 𝑦 / 𝑥𝐵𝐶𝐸) → (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
107, 8, 9syl2anc 584 . . . 4 ((𝜑𝑥𝐴) → (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
1110ralrimiva 3145 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
12 nfcv 2904 . . . . . 6 𝑥𝐴
1312, 4nfiun 5021 . . . . 5 𝑥 𝑦𝐴 𝑦 / 𝑥𝐵
14 nfcv 2904 . . . . 5 𝑥𝐸
1513, 14nfxp 5716 . . . 4 𝑥( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸)
1615iunssf 5042 . . 3 ( 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸) ↔ ∀𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
1711, 16sylibr 234 . 2 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸))
186xpeq1i 5709 . 2 ( 𝑥𝐴 𝐵 × 𝐸) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 × 𝐸)
1917, 18sseqtrrdi 4024 1 (𝜑 𝑥𝐴 (𝐵 × 𝐶) ⊆ ( 𝑥𝐴 𝐵 × 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3060  csb 3898  wss 3950   ciun 4989   × cxp 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-v 3481  df-sbc 3788  df-csb 3899  df-ss 3967  df-iun 4991  df-opab 5204  df-xp 5689
This theorem is referenced by:  fldextrspunlsplem  33708
  Copyright terms: Public domain W3C validator