MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem16 Structured version   Visualization version   GIF version

Theorem kmlem16 9852
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.)
Hypotheses
Ref Expression
kmlem14.1 (𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))
kmlem14.2 (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))
kmlem14.3 (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
Assertion
Ref Expression
kmlem16 ((∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥𝜒)) ↔ ∃𝑦𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem kmlem16
StepHypRef Expression
1 kmlem14.1 . . . 4 (𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))
2 kmlem14.2 . . . 4 (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))
3 kmlem14.3 . . . 4 (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
41, 2, 3kmlem14 9850 . . 3 (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑))
51, 2, 3kmlem15 9851 . . . 4 ((¬ 𝑦𝑥𝜒) ↔ ∀𝑧𝑣𝑢𝑦𝑥𝜓))
65exbii 1851 . . 3 (∃𝑦𝑦𝑥𝜒) ↔ ∃𝑦𝑧𝑣𝑢𝑦𝑥𝜓))
74, 6orbi12i 911 . 2 ((∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥𝜒)) ↔ (∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑦𝑧𝑣𝑢𝑦𝑥𝜓)))
8 19.43 1886 . 2 (∃𝑦(∀𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∀𝑧𝑣𝑢𝑦𝑥𝜓)) ↔ (∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑦𝑧𝑣𝑢𝑦𝑥𝜓)))
9 pm3.24 402 . . . . . 6 ¬ (𝑦𝑥 ∧ ¬ 𝑦𝑥)
10 simpl 482 . . . . . . . . 9 ((𝑦𝑥𝜑) → 𝑦𝑥)
1110sps 2180 . . . . . . . 8 (∀𝑢(𝑦𝑥𝜑) → 𝑦𝑥)
1211exlimivv 1936 . . . . . . 7 (∃𝑧𝑣𝑢(𝑦𝑥𝜑) → 𝑦𝑥)
13 simpl 482 . . . . . . . . 9 ((¬ 𝑦𝑥𝜓) → ¬ 𝑦𝑥)
1413sps 2180 . . . . . . . 8 (∀𝑢𝑦𝑥𝜓) → ¬ 𝑦𝑥)
1514exlimivv 1936 . . . . . . 7 (∃𝑧𝑣𝑢𝑦𝑥𝜓) → ¬ 𝑦𝑥)
1612, 15anim12i 612 . . . . . 6 ((∃𝑧𝑣𝑢(𝑦𝑥𝜑) ∧ ∃𝑧𝑣𝑢𝑦𝑥𝜓)) → (𝑦𝑥 ∧ ¬ 𝑦𝑥))
179, 16mto 196 . . . . 5 ¬ (∃𝑧𝑣𝑢(𝑦𝑥𝜑) ∧ ∃𝑧𝑣𝑢𝑦𝑥𝜓))
18 19.33b 1889 . . . . 5 (¬ (∃𝑧𝑣𝑢(𝑦𝑥𝜑) ∧ ∃𝑧𝑣𝑢𝑦𝑥𝜓)) → (∀𝑧(∃𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑣𝑢𝑦𝑥𝜓)) ↔ (∀𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∀𝑧𝑣𝑢𝑦𝑥𝜓))))
1917, 18ax-mp 5 . . . 4 (∀𝑧(∃𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑣𝑢𝑦𝑥𝜓)) ↔ (∀𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∀𝑧𝑣𝑢𝑦𝑥𝜓)))
2010exlimiv 1934 . . . . . . . . . 10 (∃𝑢(𝑦𝑥𝜑) → 𝑦𝑥)
2113exlimiv 1934 . . . . . . . . . 10 (∃𝑢𝑦𝑥𝜓) → ¬ 𝑦𝑥)
2220, 21anim12i 612 . . . . . . . . 9 ((∃𝑢(𝑦𝑥𝜑) ∧ ∃𝑢𝑦𝑥𝜓)) → (𝑦𝑥 ∧ ¬ 𝑦𝑥))
239, 22mto 196 . . . . . . . 8 ¬ (∃𝑢(𝑦𝑥𝜑) ∧ ∃𝑢𝑦𝑥𝜓))
24 19.33b 1889 . . . . . . . 8 (¬ (∃𝑢(𝑦𝑥𝜑) ∧ ∃𝑢𝑦𝑥𝜓)) → (∀𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)) ↔ (∀𝑢(𝑦𝑥𝜑) ∨ ∀𝑢𝑦𝑥𝜓))))
2523, 24ax-mp 5 . . . . . . 7 (∀𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)) ↔ (∀𝑢(𝑦𝑥𝜑) ∨ ∀𝑢𝑦𝑥𝜓)))
2625exbii 1851 . . . . . 6 (∃𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)) ↔ ∃𝑣(∀𝑢(𝑦𝑥𝜑) ∨ ∀𝑢𝑦𝑥𝜓)))
27 19.43 1886 . . . . . 6 (∃𝑣(∀𝑢(𝑦𝑥𝜑) ∨ ∀𝑢𝑦𝑥𝜓)) ↔ (∃𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑣𝑢𝑦𝑥𝜓)))
2826, 27bitr2i 275 . . . . 5 ((∃𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑣𝑢𝑦𝑥𝜓)) ↔ ∃𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
2928albii 1823 . . . 4 (∀𝑧(∃𝑣𝑢(𝑦𝑥𝜑) ∨ ∃𝑣𝑢𝑦𝑥𝜓)) ↔ ∀𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
3019, 29bitr3i 276 . . 3 ((∀𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∀𝑧𝑣𝑢𝑦𝑥𝜓)) ↔ ∀𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
3130exbii 1851 . 2 (∃𝑦(∀𝑧𝑣𝑢(𝑦𝑥𝜑) ∨ ∀𝑧𝑣𝑢𝑦𝑥𝜓)) ↔ ∃𝑦𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
327, 8, 313bitr2i 298 1 ((∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥𝜒)) ↔ ∃𝑦𝑧𝑣𝑢((𝑦𝑥𝜑) ∨ (¬ 𝑦𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537  wex 1783  wcel 2108  ∃!weu 2568  wne 2942  wral 3063  wrex 3064  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890
This theorem is referenced by:  dfackm  9853
  Copyright terms: Public domain W3C validator