MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfackm Structured version   Visualization version   GIF version

Theorem dfackm 10061
Description: Equivalence of the Axiom of Choice and Maes' AC ackm 10359. The proof consists of lemmas kmlem1 10045 through kmlem16 10060 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e., replacing dfac5 10023 with biid 261) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfackm (CHOICE ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem dfackm
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac5 10023 . 2 (CHOICE ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
2 eqid 2729 . . . . 5 {𝑡 ∣ ∃𝑥 𝑡 = ( (𝑥 ∖ {}))} = {𝑡 ∣ ∃𝑥 𝑡 = ( (𝑥 ∖ {}))}
32kmlem13 10057 . . . 4 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
4 kmlem8 10052 . . . . 5 ((¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
54albii 1819 . . . 4 (∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑥(∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
63, 5bitri 275 . . 3 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥(∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
7 df-ne 2926 . . . . . . . . 9 (𝑦𝑣 ↔ ¬ 𝑦 = 𝑣)
87bicomi 224 . . . . . . . 8 𝑦 = 𝑣𝑦𝑣)
98anbi2i 623 . . . . . . 7 ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ↔ (𝑣𝑥𝑦𝑣))
109anbi1i 624 . . . . . 6 (((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣) ↔ ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣))
1110imbi2i 336 . . . . 5 ((𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣)) ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))
12 biid 261 . . . . 5 ((𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))) ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))
13 biid 261 . . . . 5 (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
1411, 12, 13kmlem16 10060 . . . 4 ((∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∃𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
1514albii 1819 . . 3 (∀𝑥(∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ∨ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
166, 15bitri 275 . 2 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
171, 16bitri 275 1 (CHOICE ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {cab 2707  wne 2925  wral 3044  wrex 3053  cdif 3900  cin 3902  c0 4284  {csn 4577   cuni 4858  CHOICEwac 10009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ac 10010
This theorem is referenced by:  axac3  10358  ackm  10359  axac2  10360
  Copyright terms: Public domain W3C validator