![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latasym | Structured version Visualization version GIF version |
Description: A lattice ordering is asymmetric. (eqss 3997 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latref.b | β’ π΅ = (BaseβπΎ) |
latref.l | β’ β€ = (leβπΎ) |
Ref | Expression |
---|---|
latasym | β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latref.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | latref.l | . . 3 β’ β€ = (leβπΎ) | |
3 | 1, 2 | latasymb 18394 | . 2 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
4 | 3 | biimpd 228 | 1 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 Basecbs 17143 lecple 17203 Latclat 18383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-dm 5686 df-iota 6495 df-fv 6551 df-proset 18247 df-poset 18265 df-lat 18384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |