MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasym Structured version   Visualization version   GIF version

Theorem latasym 18442
Description: A lattice ordering is asymmetric. (eqss 3997 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐡 = (Baseβ€˜πΎ)
latref.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
latasym ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ))

Proof of Theorem latasym
StepHypRef Expression
1 latref.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 latref.l . . 3 ≀ = (leβ€˜πΎ)
31, 2latasymb 18441 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) ↔ 𝑋 = π‘Œ))
43biimpd 228 1 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) β†’ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5152  β€˜cfv 6553  Basecbs 17187  lecple 17247  Latclat 18430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5688  df-dm 5692  df-iota 6505  df-fv 6561  df-proset 18294  df-poset 18312  df-lat 18431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator