|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > latasym | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is asymmetric. (eqss 3999 analog.) (Contributed by NM, 8-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) | 
| latref.l | ⊢ ≤ = (le‘𝐾) | 
| Ref | Expression | 
|---|---|
| latasym | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latasymb 18487 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| 4 | 3 | biimpd 229 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 Latclat 18476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-proset 18340 df-poset 18359 df-lat 18477 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |