![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. (sstr 3988 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 18463 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | postr 18345 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
5 | 1, 4 | sylan 578 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 Basecbs 17213 lecple 17273 Posetcpo 18332 Latclat 18456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-xp 5688 df-dm 5692 df-iota 6506 df-fv 6562 df-poset 18338 df-lat 18457 |
This theorem is referenced by: lattrd 18471 latjlej1 18478 latjlej12 18480 latnlej2 18484 latmlem1 18494 latmlem12 18496 clatleglb 18543 lecmtN 38954 hlrelat2 39102 ps-2 39177 dalem3 39363 dalem17 39379 dalem21 39393 dalem25 39397 linepsubN 39451 pmapsub 39467 cdlemblem 39492 pmapjoin 39551 lhpmcvr4N 39725 4atexlemnclw 39769 cdlemd3 39899 cdleme3g 39933 cdleme3h 39934 cdleme7d 39945 cdleme21c 40026 cdleme32b 40141 cdleme35fnpq 40148 cdleme35f 40153 cdleme48bw 40201 cdlemf1 40260 cdlemg2fv2 40299 cdlemg7fvbwN 40306 cdlemg4 40316 cdlemg6c 40319 cdlemg27a 40391 cdlemg33b0 40400 cdlemg33a 40405 cdlemk3 40532 dia2dimlem1 40763 dihord6b 40959 dihord5apre 40961 dihglbcpreN 40999 |
Copyright terms: Public domain | W3C validator |