![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. (sstr 4004 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 18496 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | postr 18378 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-poset 18371 df-lat 18490 |
This theorem is referenced by: lattrd 18504 latjlej1 18511 latjlej12 18513 latnlej2 18517 latmlem1 18527 latmlem12 18529 clatleglb 18576 lecmtN 39238 hlrelat2 39386 ps-2 39461 dalem3 39647 dalem17 39663 dalem21 39677 dalem25 39681 linepsubN 39735 pmapsub 39751 cdlemblem 39776 pmapjoin 39835 lhpmcvr4N 40009 4atexlemnclw 40053 cdlemd3 40183 cdleme3g 40217 cdleme3h 40218 cdleme7d 40229 cdleme21c 40310 cdleme32b 40425 cdleme35fnpq 40432 cdleme35f 40437 cdleme48bw 40485 cdlemf1 40544 cdlemg2fv2 40583 cdlemg7fvbwN 40590 cdlemg4 40600 cdlemg6c 40603 cdlemg27a 40675 cdlemg33b0 40684 cdlemg33a 40689 cdlemk3 40816 dia2dimlem1 41047 dihord6b 41243 dihord5apre 41245 dihglbcpreN 41283 |
Copyright terms: Public domain | W3C validator |