| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. (sstr 3943 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18344 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | postr 18226 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17120 lecple 17168 Posetcpo 18213 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-iota 6437 df-fv 6489 df-poset 18219 df-lat 18338 |
| This theorem is referenced by: lattrd 18352 latjlej1 18359 latjlej12 18361 latnlej2 18365 latmlem1 18375 latmlem12 18377 clatleglb 18424 lecmtN 39301 hlrelat2 39448 ps-2 39523 dalem3 39709 dalem17 39725 dalem21 39739 dalem25 39743 linepsubN 39797 pmapsub 39813 cdlemblem 39838 pmapjoin 39897 lhpmcvr4N 40071 4atexlemnclw 40115 cdlemd3 40245 cdleme3g 40279 cdleme3h 40280 cdleme7d 40291 cdleme21c 40372 cdleme32b 40487 cdleme35fnpq 40494 cdleme35f 40499 cdleme48bw 40547 cdlemf1 40606 cdlemg2fv2 40645 cdlemg7fvbwN 40652 cdlemg4 40662 cdlemg6c 40665 cdlemg27a 40737 cdlemg33b0 40746 cdlemg33a 40751 cdlemk3 40878 dia2dimlem1 41109 dihord6b 41305 dihord5apre 41307 dihglbcpreN 41345 |
| Copyright terms: Public domain | W3C validator |