![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. (sstr 4017 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 18508 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | postr 18390 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-poset 18383 df-lat 18502 |
This theorem is referenced by: lattrd 18516 latjlej1 18523 latjlej12 18525 latnlej2 18529 latmlem1 18539 latmlem12 18541 clatleglb 18588 lecmtN 39212 hlrelat2 39360 ps-2 39435 dalem3 39621 dalem17 39637 dalem21 39651 dalem25 39655 linepsubN 39709 pmapsub 39725 cdlemblem 39750 pmapjoin 39809 lhpmcvr4N 39983 4atexlemnclw 40027 cdlemd3 40157 cdleme3g 40191 cdleme3h 40192 cdleme7d 40203 cdleme21c 40284 cdleme32b 40399 cdleme35fnpq 40406 cdleme35f 40411 cdleme48bw 40459 cdlemf1 40518 cdlemg2fv2 40557 cdlemg7fvbwN 40564 cdlemg4 40574 cdlemg6c 40577 cdlemg27a 40649 cdlemg33b0 40658 cdlemg33a 40663 cdlemk3 40790 dia2dimlem1 41021 dihord6b 41217 dihord5apre 41219 dihglbcpreN 41257 |
Copyright terms: Public domain | W3C validator |