Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. (sstr 3925 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 18071 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | postr 17953 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-poset 17946 df-lat 18065 |
This theorem is referenced by: lattrd 18079 latjlej1 18086 latjlej12 18088 latnlej2 18092 latmlem1 18102 latmlem12 18104 clatleglb 18151 lecmtN 37197 hlrelat2 37344 ps-2 37419 dalem3 37605 dalem17 37621 dalem21 37635 dalem25 37639 linepsubN 37693 pmapsub 37709 cdlemblem 37734 pmapjoin 37793 lhpmcvr4N 37967 4atexlemnclw 38011 cdlemd3 38141 cdleme3g 38175 cdleme3h 38176 cdleme7d 38187 cdleme21c 38268 cdleme32b 38383 cdleme35fnpq 38390 cdleme35f 38395 cdleme48bw 38443 cdlemf1 38502 cdlemg2fv2 38541 cdlemg7fvbwN 38548 cdlemg4 38558 cdlemg6c 38561 cdlemg27a 38633 cdlemg33b0 38642 cdlemg33a 38647 cdlemk3 38774 dia2dimlem1 39005 dihord6b 39201 dihord5apre 39203 dihglbcpreN 39241 |
Copyright terms: Public domain | W3C validator |