| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. (sstr 3939 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18348 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | postr 18230 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6488 Basecbs 17124 lecple 17172 Posetcpo 18217 Latclat 18341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-dm 5631 df-iota 6444 df-fv 6496 df-poset 18223 df-lat 18342 |
| This theorem is referenced by: lattrd 18356 latjlej1 18363 latjlej12 18365 latnlej2 18369 latmlem1 18379 latmlem12 18381 clatleglb 18428 lecmtN 39378 hlrelat2 39525 ps-2 39600 dalem3 39786 dalem17 39802 dalem21 39816 dalem25 39820 linepsubN 39874 pmapsub 39890 cdlemblem 39915 pmapjoin 39974 lhpmcvr4N 40148 4atexlemnclw 40192 cdlemd3 40322 cdleme3g 40356 cdleme3h 40357 cdleme7d 40368 cdleme21c 40449 cdleme32b 40564 cdleme35fnpq 40571 cdleme35f 40576 cdleme48bw 40624 cdlemf1 40683 cdlemg2fv2 40722 cdlemg7fvbwN 40729 cdlemg4 40739 cdlemg6c 40742 cdlemg27a 40814 cdlemg33b0 40823 cdlemg33a 40828 cdlemk3 40955 dia2dimlem1 41186 dihord6b 41382 dihord5apre 41384 dihglbcpreN 41422 |
| Copyright terms: Public domain | W3C validator |