| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. (sstr 3955 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18397 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | postr 18281 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-poset 18274 df-lat 18391 |
| This theorem is referenced by: lattrd 18405 latjlej1 18412 latjlej12 18414 latnlej2 18418 latmlem1 18428 latmlem12 18430 clatleglb 18477 lecmtN 39249 hlrelat2 39397 ps-2 39472 dalem3 39658 dalem17 39674 dalem21 39688 dalem25 39692 linepsubN 39746 pmapsub 39762 cdlemblem 39787 pmapjoin 39846 lhpmcvr4N 40020 4atexlemnclw 40064 cdlemd3 40194 cdleme3g 40228 cdleme3h 40229 cdleme7d 40240 cdleme21c 40321 cdleme32b 40436 cdleme35fnpq 40443 cdleme35f 40448 cdleme48bw 40496 cdlemf1 40555 cdlemg2fv2 40594 cdlemg7fvbwN 40601 cdlemg4 40611 cdlemg6c 40614 cdlemg27a 40686 cdlemg33b0 40695 cdlemg33a 40700 cdlemk3 40827 dia2dimlem1 41058 dihord6b 41254 dihord5apre 41256 dihglbcpreN 41294 |
| Copyright terms: Public domain | W3C validator |