| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. (sstr 3992 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18483 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | postr 18366 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 Posetcpo 18353 Latclat 18476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-poset 18359 df-lat 18477 |
| This theorem is referenced by: lattrd 18491 latjlej1 18498 latjlej12 18500 latnlej2 18504 latmlem1 18514 latmlem12 18516 clatleglb 18563 lecmtN 39257 hlrelat2 39405 ps-2 39480 dalem3 39666 dalem17 39682 dalem21 39696 dalem25 39700 linepsubN 39754 pmapsub 39770 cdlemblem 39795 pmapjoin 39854 lhpmcvr4N 40028 4atexlemnclw 40072 cdlemd3 40202 cdleme3g 40236 cdleme3h 40237 cdleme7d 40248 cdleme21c 40329 cdleme32b 40444 cdleme35fnpq 40451 cdleme35f 40456 cdleme48bw 40504 cdlemf1 40563 cdlemg2fv2 40602 cdlemg7fvbwN 40609 cdlemg4 40619 cdlemg6c 40622 cdlemg27a 40694 cdlemg33b0 40703 cdlemg33a 40708 cdlemk3 40835 dia2dimlem1 41066 dihord6b 41262 dihord5apre 41264 dihglbcpreN 41302 |
| Copyright terms: Public domain | W3C validator |