| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is transitive. (sstr 3958 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18404 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | postr 18288 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-poset 18281 df-lat 18398 |
| This theorem is referenced by: lattrd 18412 latjlej1 18419 latjlej12 18421 latnlej2 18425 latmlem1 18435 latmlem12 18437 clatleglb 18484 lecmtN 39256 hlrelat2 39404 ps-2 39479 dalem3 39665 dalem17 39681 dalem21 39695 dalem25 39699 linepsubN 39753 pmapsub 39769 cdlemblem 39794 pmapjoin 39853 lhpmcvr4N 40027 4atexlemnclw 40071 cdlemd3 40201 cdleme3g 40235 cdleme3h 40236 cdleme7d 40247 cdleme21c 40328 cdleme32b 40443 cdleme35fnpq 40450 cdleme35f 40455 cdleme48bw 40503 cdlemf1 40562 cdlemg2fv2 40601 cdlemg7fvbwN 40608 cdlemg4 40618 cdlemg6c 40621 cdlemg27a 40693 cdlemg33b0 40702 cdlemg33a 40707 cdlemk3 40834 dia2dimlem1 41065 dihord6b 41261 dihord5apre 41263 dihglbcpreN 41301 |
| Copyright terms: Public domain | W3C validator |