MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymb Structured version   Visualization version   GIF version

Theorem latasymb 17655
Description: A lattice ordering is asymmetric. (eqss 3957 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latasymb ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem latasymb
StepHypRef Expression
1 latpos 17651 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posasymb 17553 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
51, 4syl3an1 1160 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  Basecbs 16474  lecple 16563  Posetcpo 17541  Latclat 17646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-nul 5186
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-xp 5538  df-dm 5542  df-iota 6293  df-fv 6342  df-proset 17529  df-poset 17547  df-lat 17647
This theorem is referenced by:  latasym  17656  latasymd  17658  lubun  17724  cmtbr4N  36513  cvlexchb1  36588  hlateq  36657  cvratlem  36679  cvrat3  36700  pmap11  37020  cdleme50eq  37799  dia11N  38306  dib11N  38418  dih11  38523
  Copyright terms: Public domain W3C validator