|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > latasymb | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is asymmetric. (eqss 3998 analog.) (Contributed by NM, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) | 
| latref.l | ⊢ ≤ = (le‘𝐾) | 
| Ref | Expression | 
|---|---|
| latasymb | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latpos 18484 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | posasymb 18366 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 lecple 17305 Posetcpo 18354 Latclat 18477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-dm 5694 df-iota 6513 df-fv 6568 df-proset 18341 df-poset 18360 df-lat 18478 | 
| This theorem is referenced by: latasym 18489 latasymd 18491 lubun 18561 cmtbr4N 39257 cvlexchb1 39332 hlateq 39402 cvratlem 39424 cvrat3 39445 pmap11 39765 cdleme50eq 40544 dia11N 41051 dib11N 41163 dih11 41268 | 
| Copyright terms: Public domain | W3C validator |