MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymb Structured version   Visualization version   GIF version

Theorem latasymb 18457
Description: A lattice ordering is asymmetric. (eqss 3979 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latasymb ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem latasymb
StepHypRef Expression
1 latpos 18453 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posasymb 18336 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
51, 4syl3an1 1163 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  Latclat 18446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669  df-iota 6489  df-fv 6544  df-proset 18311  df-poset 18330  df-lat 18447
This theorem is referenced by:  latasym  18458  latasymd  18460  lubun  18530  cmtbr4N  39278  cvlexchb1  39353  hlateq  39423  cvratlem  39445  cvrat3  39466  pmap11  39786  cdleme50eq  40565  dia11N  41072  dib11N  41184  dih11  41289
  Copyright terms: Public domain W3C validator