![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > leop | Structured version Visualization version GIF version |
Description: Ordering relation for operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leop | โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (๐ โคop ๐ โ โ๐ฅ โ โ 0 โค (((๐ โop ๐)โ๐ฅ) ยทih ๐ฅ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leopg 30893 | . 2 โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (๐ โคop ๐ โ ((๐ โop ๐) โ HrmOp โง โ๐ฅ โ โ 0 โค (((๐ โop ๐)โ๐ฅ) ยทih ๐ฅ)))) | |
2 | hmopd 30793 | . . . 4 โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (๐ โop ๐) โ HrmOp) | |
3 | 2 | ancoms 459 | . . 3 โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (๐ โop ๐) โ HrmOp) |
4 | 3 | biantrurd 533 | . 2 โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (โ๐ฅ โ โ 0 โค (((๐ โop ๐)โ๐ฅ) ยทih ๐ฅ) โ ((๐ โop ๐) โ HrmOp โง โ๐ฅ โ โ 0 โค (((๐ โop ๐)โ๐ฅ) ยทih ๐ฅ)))) |
5 | 1, 4 | bitr4d 281 | 1 โข ((๐ โ HrmOp โง ๐ โ HrmOp) โ (๐ โคop ๐ โ โ๐ฅ โ โ 0 โค (((๐ โop ๐)โ๐ฅ) ยทih ๐ฅ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 โ wcel 2106 โwral 3062 class class class wbr 5103 โcfv 6493 (class class class)co 7351 0cc0 11009 โค cle 11148 โchba 29690 ยทih csp 29693 โop chod 29711 HrmOpcho 29721 โคop cleo 29729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 29770 ax-hfvadd 29771 ax-hvcom 29772 ax-hvass 29773 ax-hv0cl 29774 ax-hvaddid 29775 ax-hfvmul 29776 ax-hvmulid 29777 ax-hvmulass 29778 ax-hvdistr1 29779 ax-hvdistr2 29780 ax-hvmul0 29781 ax-hfi 29850 ax-his1 29853 ax-his2 29854 ax-his3 29855 ax-his4 29856 ax-hcompl 29973 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-of 7609 df-om 7795 df-1st 7913 df-2nd 7914 df-supp 8085 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-2o 8405 df-oadd 8408 df-omul 8409 df-er 8606 df-map 8725 df-pm 8726 df-ixp 8794 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-fsupp 9264 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9404 df-card 9833 df-acn 9836 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-dec 12577 df-uz 12722 df-q 12828 df-rp 12870 df-xneg 12987 df-xadd 12988 df-xmul 12989 df-ioo 13222 df-ico 13224 df-icc 13225 df-fz 13379 df-fzo 13522 df-fl 13651 df-seq 13861 df-exp 13922 df-hash 14185 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-clim 15330 df-rlim 15331 df-sum 15531 df-struct 16979 df-sets 16996 df-slot 17014 df-ndx 17026 df-base 17044 df-ress 17073 df-plusg 17106 df-mulr 17107 df-starv 17108 df-sca 17109 df-vsca 17110 df-ip 17111 df-tset 17112 df-ple 17113 df-ds 17115 df-unif 17116 df-hom 17117 df-cco 17118 df-rest 17264 df-topn 17265 df-0g 17283 df-gsum 17284 df-topgen 17285 df-pt 17286 df-prds 17289 df-xrs 17344 df-qtop 17349 df-imas 17350 df-xps 17352 df-mre 17426 df-mrc 17427 df-acs 17429 df-mgm 18457 df-sgrp 18506 df-mnd 18517 df-submnd 18562 df-mulg 18832 df-cntz 19056 df-cmn 19523 df-psmet 20741 df-xmet 20742 df-met 20743 df-bl 20744 df-mopn 20745 df-fbas 20746 df-fg 20747 df-cnfld 20750 df-top 22195 df-topon 22212 df-topsp 22234 df-bases 22248 df-cld 22322 df-ntr 22323 df-cls 22324 df-nei 22401 df-cn 22530 df-cnp 22531 df-lm 22532 df-haus 22618 df-tx 22865 df-hmeo 23058 df-fil 23149 df-fm 23241 df-flim 23242 df-flf 23243 df-xms 23625 df-ms 23626 df-tms 23627 df-cfil 24571 df-cau 24572 df-cmet 24573 df-grpo 29264 df-gid 29265 df-ginv 29266 df-gdiv 29267 df-ablo 29316 df-vc 29330 df-nv 29363 df-va 29366 df-ba 29367 df-sm 29368 df-0v 29369 df-vs 29370 df-nmcv 29371 df-ims 29372 df-dip 29472 df-ssp 29493 df-ph 29584 df-cbn 29634 df-hnorm 29739 df-hba 29740 df-hvsub 29742 df-hlim 29743 df-hcau 29744 df-sh 29978 df-ch 29992 df-oc 30023 df-ch0 30024 df-shs 30079 df-pjh 30166 df-hosum 30501 df-homul 30502 df-hodif 30503 df-h0op 30519 df-hmop 30615 df-leop 30623 |
This theorem is referenced by: leop2 30895 leop3 30896 leoppos 30897 leoprf 30899 |
Copyright terms: Public domain | W3C validator |