Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmbfmOLD Structured version   Visualization version   GIF version

Theorem mbfmbfmOLD 34008
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mbfmbfmOLD.1 (𝜑𝑀 ran measures)
mbfmbfmOLD.2 (𝜑𝐽 ∈ Top)
mbfmbfmOLD.3 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
Assertion
Ref Expression
mbfmbfmOLD (𝜑𝐹 ran MblFnM)

Proof of Theorem mbfmbfmOLD
StepHypRef Expression
1 mbfmbfmOLD.3 . 2 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
21isanmbfm 34007 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   cuni 4909  dom cdm 5678  ran crn 5679  cfv 6549  (class class class)co 7419  Topctop 22839  sigaGencsigagen 33888  measurescmeas 33945  MblFnMcmbfm 33999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-cnv 5686  df-dm 5688  df-rn 5689  df-iota 6501  df-fv 6557  df-ov 7422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator