![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmbfmOLD | Structured version Visualization version GIF version |
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mbfmbfmOLD.1 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
mbfmbfmOLD.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
mbfmbfmOLD.3 | ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) |
Ref | Expression |
---|---|
mbfmbfmOLD | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmbfmOLD.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) | |
2 | 1 | isanmbfm 34007 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∪ cuni 4909 dom cdm 5678 ran crn 5679 ‘cfv 6549 (class class class)co 7419 Topctop 22839 sigaGencsigagen 33888 measurescmeas 33945 MblFnMcmbfm 33999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-cnv 5686 df-dm 5688 df-rn 5689 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |