| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmbfmOLD | Structured version Visualization version GIF version | ||
| Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mbfmbfmOLD.1 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| mbfmbfmOLD.2 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| mbfmbfmOLD.3 | ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) |
| Ref | Expression |
|---|---|
| mbfmbfmOLD | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmbfmOLD.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) | |
| 2 | 1 | isanmbfm 34288 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4883 dom cdm 5654 ran crn 5655 ‘cfv 6531 (class class class)co 7405 Topctop 22831 sigaGencsigagen 34169 measurescmeas 34226 MblFnMcmbfm 34280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |