Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmbfmOLD Structured version   Visualization version   GIF version

Theorem mbfmbfmOLD 34270
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mbfmbfmOLD.1 (𝜑𝑀 ran measures)
mbfmbfmOLD.2 (𝜑𝐽 ∈ Top)
mbfmbfmOLD.3 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
Assertion
Ref Expression
mbfmbfmOLD (𝜑𝐹 ran MblFnM)

Proof of Theorem mbfmbfmOLD
StepHypRef Expression
1 mbfmbfmOLD.3 . 2 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
21isanmbfm 34269 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   cuni 4856  dom cdm 5614  ran crn 5615  cfv 6481  (class class class)co 7346  Topctop 22808  sigaGencsigagen 34151  measurescmeas 34208  MblFnMcmbfm 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator