Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmbfmOLD Structured version   Visualization version   GIF version

Theorem mbfmbfmOLD 33934
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mbfmbfmOLD.1 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
mbfmbfmOLD.2 (πœ‘ β†’ 𝐽 ∈ Top)
mbfmbfmOLD.3 (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM(sigaGenβ€˜π½)))
Assertion
Ref Expression
mbfmbfmOLD (πœ‘ β†’ 𝐹 ∈ βˆͺ ran MblFnM)

Proof of Theorem mbfmbfmOLD
StepHypRef Expression
1 mbfmbfmOLD.3 . 2 (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM(sigaGenβ€˜π½)))
21isanmbfm 33933 1 (πœ‘ β†’ 𝐹 ∈ βˆͺ ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  βˆͺ cuni 4903  dom cdm 5672  ran crn 5673  β€˜cfv 6543  (class class class)co 7416  Topctop 22813  sigaGencsigagen 33814  measurescmeas 33871  MblFnMcmbfm 33925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-cnv 5680  df-dm 5682  df-rn 5683  df-iota 6495  df-fv 6551  df-ov 7419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator