Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfm Structured version   Visualization version   GIF version

Theorem isanmbfm 33255
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.)
Hypothesis
Ref Expression
isanmbfm.1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfm
StepHypRef Expression
1 ovssunirn 7445 . 2 (𝑆MblFnM𝑇) ⊆ ran MblFnM
2 isanmbfm.1 . 2 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
31, 2sselid 3981 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   cuni 4909  ran crn 5678  (class class class)co 7409  MblFnMcmbfm 33247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-cnv 5685  df-dm 5687  df-rn 5688  df-iota 6496  df-fv 6552  df-ov 7412
This theorem is referenced by:  mbfmbfmOLD  33256  mbfmbfm  33257  orvcval4  33459
  Copyright terms: Public domain W3C validator