Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isanmbfm | Structured version Visualization version GIF version |
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
isanmbfm | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmf.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | mbfmf.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
4 | 1, 2 | ismbfm 32228 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
5 | 3, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
6 | unieq 4856 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
7 | 6 | oveq2d 7288 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
8 | 7 | eleq2d 2826 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ↔ 𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆))) |
9 | eleq2 2829 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((◡𝐹 “ 𝑥) ∈ 𝑠 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
10 | 9 | ralbidv 3123 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
11 | 8, 10 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
12 | unieq 4856 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
13 | 12 | oveq1d 7287 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
14 | 13 | eleq2d 2826 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ↔ 𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆))) |
15 | raleq 3341 | . . . . 5 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
16 | 14, 15 | anbi12d 631 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
17 | 11, 16 | rspc2ev 3573 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ∧ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
18 | 1, 2, 5, 17 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | elunirnmbfm 32229 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | |
20 | 18, 19 | sylibr 233 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 ∪ cuni 4845 ◡ccnv 5589 ran crn 5591 “ cima 5593 (class class class)co 7272 ↑m cmap 8607 sigAlgebracsiga 32085 MblFnMcmbfm 32226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-mbfm 32227 |
This theorem is referenced by: mbfmbfm 32234 orvcval4 32436 |
Copyright terms: Public domain | W3C validator |