Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfm Structured version   Visualization version   GIF version

Theorem isanmbfm 34230
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.)
Hypothesis
Ref Expression
isanmbfm.1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfm
StepHypRef Expression
1 ovssunirn 7385 . 2 (𝑆MblFnM𝑇) ⊆ ran MblFnM
2 isanmbfm.1 . 2 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
31, 2sselid 3933 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4858  ran crn 5620  (class class class)co 7349  MblFnMcmbfm 34222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  mbfmbfmOLD  34231  mbfmbfm  34232  orvcval4  34435
  Copyright terms: Public domain W3C validator