Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isanmbfm | Structured version Visualization version GIF version |
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
isanmbfm | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmf.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | mbfmf.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
4 | 1, 2 | ismbfm 32119 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
5 | 3, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
6 | unieq 4847 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
7 | 6 | oveq2d 7271 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
8 | 7 | eleq2d 2824 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ↔ 𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆))) |
9 | eleq2 2827 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((◡𝐹 “ 𝑥) ∈ 𝑠 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
10 | 9 | ralbidv 3120 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
11 | 8, 10 | anbi12d 630 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
12 | unieq 4847 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
13 | 12 | oveq1d 7270 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
14 | 13 | eleq2d 2824 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ↔ 𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆))) |
15 | raleq 3333 | . . . . 5 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
16 | 14, 15 | anbi12d 630 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
17 | 11, 16 | rspc2ev 3564 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ∧ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
18 | 1, 2, 5, 17 | syl3anc 1369 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | elunirnmbfm 32120 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | |
20 | 18, 19 | sylibr 233 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∪ cuni 4836 ◡ccnv 5579 ran crn 5581 “ cima 5583 (class class class)co 7255 ↑m cmap 8573 sigAlgebracsiga 31976 MblFnMcmbfm 32117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-mbfm 32118 |
This theorem is referenced by: mbfmbfm 32125 orvcval4 32327 |
Copyright terms: Public domain | W3C validator |