Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfm Structured version   Visualization version   GIF version

Theorem isanmbfm 32123
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfm
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmf.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 mbfmf.2 . . 3 (𝜑𝑇 ran sigAlgebra)
3 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
41, 2ismbfm 32119 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
53, 4mpbid 231 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
6 unieq 4847 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
76oveq2d 7271 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
87eleq2d 2824 . . . . 5 (𝑠 = 𝑆 → (𝐹 ∈ ( 𝑡m 𝑠) ↔ 𝐹 ∈ ( 𝑡m 𝑆)))
9 eleq2 2827 . . . . . 6 (𝑠 = 𝑆 → ((𝐹𝑥) ∈ 𝑠 ↔ (𝐹𝑥) ∈ 𝑆))
109ralbidv 3120 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆))
118, 10anbi12d 630 . . . 4 (𝑠 = 𝑆 → ((𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠) ↔ (𝐹 ∈ ( 𝑡m 𝑆) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆)))
12 unieq 4847 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
1312oveq1d 7270 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
1413eleq2d 2824 . . . . 5 (𝑡 = 𝑇 → (𝐹 ∈ ( 𝑡m 𝑆) ↔ 𝐹 ∈ ( 𝑇m 𝑆)))
15 raleq 3333 . . . . 5 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
1614, 15anbi12d 630 . . . 4 (𝑡 = 𝑇 → ((𝐹 ∈ ( 𝑡m 𝑆) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
1711, 16rspc2ev 3564 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ∧ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)) → ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
181, 2, 5, 17syl3anc 1369 . 2 (𝜑 → ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
19 elunirnmbfm 32120 . 2 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
2018, 19sylibr 233 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064   cuni 4836  ccnv 5579  ran crn 5581  cima 5583  (class class class)co 7255  m cmap 8573  sigAlgebracsiga 31976  MblFnMcmbfm 32117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-mbfm 32118
This theorem is referenced by:  mbfmbfm  32125  orvcval4  32327
  Copyright terms: Public domain W3C validator