Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isanmbfm Structured version   Visualization version   GIF version

Theorem isanmbfm 32232
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
mbfmf.1 (𝜑𝑆 ran sigAlgebra)
mbfmf.2 (𝜑𝑇 ran sigAlgebra)
mbfmf.3 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Assertion
Ref Expression
isanmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem isanmbfm
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmf.1 . . 3 (𝜑𝑆 ran sigAlgebra)
2 mbfmf.2 . . 3 (𝜑𝑇 ran sigAlgebra)
3 mbfmf.3 . . . 4 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
41, 2ismbfm 32228 . . . 4 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
53, 4mpbid 231 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
6 unieq 4856 . . . . . . 7 (𝑠 = 𝑆 𝑠 = 𝑆)
76oveq2d 7288 . . . . . 6 (𝑠 = 𝑆 → ( 𝑡m 𝑠) = ( 𝑡m 𝑆))
87eleq2d 2826 . . . . 5 (𝑠 = 𝑆 → (𝐹 ∈ ( 𝑡m 𝑠) ↔ 𝐹 ∈ ( 𝑡m 𝑆)))
9 eleq2 2829 . . . . . 6 (𝑠 = 𝑆 → ((𝐹𝑥) ∈ 𝑠 ↔ (𝐹𝑥) ∈ 𝑆))
109ralbidv 3123 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠 ↔ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆))
118, 10anbi12d 631 . . . 4 (𝑠 = 𝑆 → ((𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠) ↔ (𝐹 ∈ ( 𝑡m 𝑆) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆)))
12 unieq 4856 . . . . . . 7 (𝑡 = 𝑇 𝑡 = 𝑇)
1312oveq1d 7287 . . . . . 6 (𝑡 = 𝑇 → ( 𝑡m 𝑆) = ( 𝑇m 𝑆))
1413eleq2d 2826 . . . . 5 (𝑡 = 𝑇 → (𝐹 ∈ ( 𝑡m 𝑆) ↔ 𝐹 ∈ ( 𝑇m 𝑆)))
15 raleq 3341 . . . . 5 (𝑡 = 𝑇 → (∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆))
1614, 15anbi12d 631 . . . 4 (𝑡 = 𝑇 → ((𝐹 ∈ ( 𝑡m 𝑆) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑆) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
1711, 16rspc2ev 3573 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ∧ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)) → ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
181, 2, 5, 17syl3anc 1370 . 2 (𝜑 → ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
19 elunirnmbfm 32229 . 2 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
2018, 19sylibr 233 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   cuni 4845  ccnv 5589  ran crn 5591  cima 5593  (class class class)co 7272  m cmap 8607  sigAlgebracsiga 32085  MblFnMcmbfm 32226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-mbfm 32227
This theorem is referenced by:  mbfmbfm  32234  orvcval4  32436
  Copyright terms: Public domain W3C validator