Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isanmbfm | Structured version Visualization version GIF version |
Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
isanmbfm | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmf.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
2 | mbfmf.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
3 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
4 | 1, 2 | ismbfm 32219 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
5 | 3, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
6 | unieq 4850 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
7 | 6 | oveq2d 7291 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (∪ 𝑡 ↑m ∪ 𝑠) = (∪ 𝑡 ↑m ∪ 𝑆)) |
8 | 7 | eleq2d 2824 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ↔ 𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆))) |
9 | eleq2 2827 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((◡𝐹 “ 𝑥) ∈ 𝑠 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
10 | 9 | ralbidv 3112 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
11 | 8, 10 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) ↔ (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
12 | unieq 4850 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → ∪ 𝑡 = ∪ 𝑇) | |
13 | 12 | oveq1d 7290 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (∪ 𝑡 ↑m ∪ 𝑆) = (∪ 𝑇 ↑m ∪ 𝑆)) |
14 | 13 | eleq2d 2824 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ↔ 𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆))) |
15 | raleq 3342 | . . . . 5 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) | |
16 | 14, 15 | anbi12d 631 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑆) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
17 | 11, 16 | rspc2ev 3572 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ∧ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
18 | 1, 2, 5, 17 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
19 | elunirnmbfm 32220 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑m ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | |
20 | 18, 19 | sylibr 233 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∪ cuni 4839 ◡ccnv 5588 ran crn 5590 “ cima 5592 (class class class)co 7275 ↑m cmap 8615 sigAlgebracsiga 32076 MblFnMcmbfm 32217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-mbfm 32218 |
This theorem is referenced by: mbfmbfm 32225 orvcval4 32427 |
Copyright terms: Public domain | W3C validator |