Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmbfm Structured version   Visualization version   GIF version

Theorem mbfmbfm 34223
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.)
Hypothesis
Ref Expression
mbfmbfm.1 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
Assertion
Ref Expression
mbfmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem mbfmbfm
StepHypRef Expression
1 mbfmbfm.1 . 2 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
21isanmbfm 34221 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4931  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  sigaGencsigagen 34102  MblFnMcmbfm 34213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator