Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmbfm | Structured version Visualization version GIF version |
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.) |
Ref | Expression |
---|---|
mbfmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) |
Ref | Expression |
---|---|
mbfmbfm | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmbfm.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) | |
2 | 1 | isanmbfm 32464 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∪ cuni 4851 dom cdm 5614 ran crn 5615 ‘cfv 6473 (class class class)co 7329 sigaGencsigagen 32345 MblFnMcmbfm 32456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |