| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmbfm | Structured version Visualization version GIF version | ||
| Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) Remove hypotheses. (Revised by SN, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| mbfmbfm.1 | ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) |
| Ref | Expression |
|---|---|
| mbfmbfm | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmbfm.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) | |
| 2 | 1 | isanmbfm 34290 | 1 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∪ cuni 4858 dom cdm 5619 ran crn 5620 ‘cfv 6486 (class class class)co 7352 sigaGencsigagen 34172 MblFnMcmbfm 34283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |