Proof of Theorem mhmlem
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
2 | | mhmlem.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
3 | | mhmlem.b |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑋) |
4 | | eleq1 2839 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
5 | 4 | 3anbi2d 1438 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
6 | | fvoveq1 7173 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝐴 + 𝑦))) |
7 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
8 | 7 | oveq1d 7165 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))) |
9 | 6, 8 | eqeq12d 2774 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)))) |
10 | 5, 9 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))))) |
11 | | eleq1 2839 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
12 | 11 | 3anbi3d 1439 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
13 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵)) |
14 | 13 | fveq2d 6662 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 + 𝑦)) = (𝐹‘(𝐴 + 𝐵))) |
15 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) |
16 | 15 | oveq2d 7166 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) |
17 | 14, 16 | eqeq12d 2774 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
18 | 12, 17 | imbi12d 348 |
. . . 4
⊢ (𝑦 = 𝐵 → (((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝑦))) ↔ ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))))) |
19 | | ghmgrp.f |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
20 | 10, 18, 19 | vtocl2g 3490 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
21 | 2, 3, 20 | syl2anc 587 |
. 2
⊢ (𝜑 → ((𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵)))) |
22 | 1, 2, 3, 21 | mp3and 1461 |
1
⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) |