MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlem Structured version   Visualization version   GIF version

Theorem mhmlem 18286
Description: Lemma for mhmmnd 18288 and ghmgrp 18290. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mhmlem.a (𝜑𝐴𝑋)
mhmlem.b (𝜑𝐵𝑋)
Assertion
Ref Expression
mhmlem (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mhmlem
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 mhmlem.a . 2 (𝜑𝐴𝑋)
3 mhmlem.b . 2 (𝜑𝐵𝑋)
4 eleq1 2839 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
543anbi2d 1438 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝑋𝑦𝑋) ↔ (𝜑𝐴𝑋𝑦𝑋)))
6 fvoveq1 7173 . . . . . 6 (𝑥 = 𝐴 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝐴 + 𝑦)))
7 fveq2 6658 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
87oveq1d 7165 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝐴) (𝐹𝑦)))
96, 8eqeq12d 2774 . . . . 5 (𝑥 = 𝐴 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦))))
105, 9imbi12d 348 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ ((𝜑𝐴𝑋𝑦𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦)))))
11 eleq1 2839 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
12113anbi3d 1439 . . . . 5 (𝑦 = 𝐵 → ((𝜑𝐴𝑋𝑦𝑋) ↔ (𝜑𝐴𝑋𝐵𝑋)))
13 oveq2 7158 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
1413fveq2d 6662 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘(𝐴 + 𝑦)) = (𝐹‘(𝐴 + 𝐵)))
15 fveq2 6658 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1615oveq2d 7166 . . . . . 6 (𝑦 = 𝐵 → ((𝐹𝐴) (𝐹𝑦)) = ((𝐹𝐴) (𝐹𝐵)))
1714, 16eqeq12d 2774 . . . . 5 (𝑦 = 𝐵 → ((𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦)) ↔ (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
1812, 17imbi12d 348 . . . 4 (𝑦 = 𝐵 → (((𝜑𝐴𝑋𝑦𝑋) → (𝐹‘(𝐴 + 𝑦)) = ((𝐹𝐴) (𝐹𝑦))) ↔ ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))))
19 ghmgrp.f . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2010, 18, 19vtocl2g 3490 . . 3 ((𝐴𝑋𝐵𝑋) → ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
212, 3, 20syl2anc 587 . 2 (𝜑 → ((𝜑𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵))))
221, 2, 3, 21mp3and 1461 1 (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-iota 6294  df-fv 6343  df-ov 7153
This theorem is referenced by:  mhmid  18287  mhmmnd  18288  ghmgrp  18290  ghmcmn  19020
  Copyright terms: Public domain W3C validator