Step | Hyp | Ref
| Expression |
1 | | ghmgrp.y |
. 2
⊢ 𝑌 = (Base‘𝐻) |
2 | | eqid 2759 |
. 2
⊢
(0g‘𝐻) = (0g‘𝐻) |
3 | | ghmgrp.q |
. 2
⊢ ⨣ =
(+g‘𝐻) |
4 | | ghmgrp.1 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
5 | | fof 6577 |
. . . 4
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
7 | | mhmmnd.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Mnd) |
8 | | ghmgrp.x |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
9 | | mhmid.0 |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
10 | 8, 9 | mndidcl 17993 |
. . . 4
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑋) |
11 | 7, 10 | syl 17 |
. . 3
⊢ (𝜑 → 0 ∈ 𝑋) |
12 | 6, 11 | ffvelrnd 6844 |
. 2
⊢ (𝜑 → (𝐹‘ 0 ) ∈ 𝑌) |
13 | | simplll 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝜑) |
14 | | ghmgrp.f |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
15 | 13, 14 | syl3an1 1161 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
16 | 7 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝐺 ∈ Mnd) |
17 | 16, 10 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 0 ∈ 𝑋) |
18 | | simplr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝑖 ∈ 𝑋) |
19 | 15, 17, 18 | mhmlem 18287 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖))) |
20 | | ghmgrp.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
21 | 8, 20, 9 | mndlid 17998 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → ( 0 + 𝑖) = 𝑖) |
22 | 16, 18, 21 | syl2anc 588 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ( 0 + 𝑖) = 𝑖) |
23 | 22 | fveq2d 6663 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = (𝐹‘𝑖)) |
24 | 19, 23 | eqtr3d 2796 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖)) = (𝐹‘𝑖)) |
25 | | simpr 489 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘𝑖) = 𝑎) |
26 | 25 | oveq2d 7167 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖)) = ((𝐹‘ 0 ) ⨣ 𝑎)) |
27 | 24, 26, 25 | 3eqtr3d 2802 |
. . 3
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ 𝑎) = 𝑎) |
28 | | foelrni 6716 |
. . . 4
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) |
29 | 4, 28 | sylan 584 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) |
30 | 27, 29 | r19.29a 3214 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ((𝐹‘ 0 ) ⨣ 𝑎) = 𝑎) |
31 | 15, 18, 17 | mhmlem 18287 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = ((𝐹‘𝑖) ⨣ (𝐹‘ 0 ))) |
32 | 8, 20, 9 | mndrid 17999 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → (𝑖 + 0 ) = 𝑖) |
33 | 16, 18, 32 | syl2anc 588 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑖 + 0 ) = 𝑖) |
34 | 33 | fveq2d 6663 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = (𝐹‘𝑖)) |
35 | 31, 34 | eqtr3d 2796 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘ 0 )) = (𝐹‘𝑖)) |
36 | 25 | oveq1d 7166 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘ 0 )) = (𝑎 ⨣ (𝐹‘ 0 ))) |
37 | 35, 36, 25 | 3eqtr3d 2802 |
. . 3
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑎 ⨣ (𝐹‘ 0 )) = 𝑎) |
38 | 37, 29 | r19.29a 3214 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → (𝑎 ⨣ (𝐹‘ 0 )) = 𝑎) |
39 | 1, 2, 3, 12, 30, 38 | ismgmid2 17945 |
1
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘𝐻)) |