Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: eqsupd 9146 eqinfd 9174 updjud 9623 mreexexlemd 17270 mhmlem 18610 nn0gsumfz 19500 mdetunilem3 21671 mdetunilem9 21677 axtgupdim2 26736 axtgeucl 26737 wwlksnextprop 28178 measdivcst 32092 btwnouttr2 34251 btwnexch2 34252 cgrsub 34274 btwnconn1lem2 34317 btwnconn1lem5 34320 btwnconn1lem6 34321 segcon2 34334 btwnoutside 34354 broutsideof3 34355 outsideoftr 34358 outsideofeq 34359 lineelsb2 34377 relowlssretop 35461 lshpkrlem6 37056 reladdrsub 40289 fmuldfeq 43014 stoweidlem5 43436 el0ldep 45695 ldepspr 45702 |
Copyright terms: Public domain | W3C validator |