![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: eqsupd 9495 eqinfd 9523 updjud 9972 fvf1tp 13826 mreexexlemd 17689 mhmlem 19093 nn0gsumfz 20017 mdetunilem3 22636 mdetunilem9 22642 axtgupdim2 28494 axtgeucl 28495 wwlksnextprop 29942 measdivcst 34205 btwnouttr2 36004 btwnexch2 36005 cgrsub 36027 btwnconn1lem2 36070 btwnconn1lem5 36073 btwnconn1lem6 36074 segcon2 36087 btwnoutside 36107 broutsideof3 36108 outsideoftr 36111 outsideofeq 36112 lineelsb2 36130 relowlssretop 37346 lshpkrlem6 39097 reladdrsub 42392 onsupuni 43218 omabs2 43322 modelaxreplem2 44944 fmuldfeq 45539 stoweidlem5 45961 el0ldep 48312 ldepspr 48319 |
Copyright terms: Public domain | W3C validator |