Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: eqsupd 9314 eqinfd 9342 updjud 9791 mreexexlemd 17450 mhmlem 18791 nn0gsumfz 19680 mdetunilem3 21869 mdetunilem9 21875 axtgupdim2 27121 axtgeucl 27122 wwlksnextprop 28565 measdivcst 32490 btwnouttr2 34420 btwnexch2 34421 cgrsub 34443 btwnconn1lem2 34486 btwnconn1lem5 34489 btwnconn1lem6 34490 segcon2 34503 btwnoutside 34523 broutsideof3 34524 outsideoftr 34527 outsideofeq 34528 lineelsb2 34546 relowlssretop 35647 lshpkrlem6 37390 reladdrsub 40636 omabs2 41325 fmuldfeq 43468 stoweidlem5 43890 el0ldep 46166 ldepspr 46173 |
Copyright terms: Public domain | W3C validator |