MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1466
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  eqsupd  9384  eqinfd  9413  updjud  9863  fvf1tp  13727  mreexexlemd  17585  mhmlem  18976  nn0gsumfz  19898  mdetunilem3  22534  mdetunilem9  22540  axtgupdim2  28451  axtgeucl  28452  wwlksnextprop  29892  measdivcst  34207  btwnouttr2  36003  btwnexch2  36004  cgrsub  36026  btwnconn1lem2  36069  btwnconn1lem5  36072  btwnconn1lem6  36073  segcon2  36086  btwnoutside  36106  broutsideof3  36107  outsideoftr  36110  outsideofeq  36111  lineelsb2  36129  relowlssretop  37344  lshpkrlem6  39101  reladdrsub  42366  onsupuni  43211  omabs2  43314  modelaxreplem2  44962  fmuldfeq  45574  stoweidlem5  45996  el0ldep  48448  ldepspr  48455
  Copyright terms: Public domain W3C validator