MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1465
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1129 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  eqsupd  9452  eqinfd  9480  updjud  9929  mreexexlemd  17588  mhmlem  18945  nn0gsumfz  19852  mdetunilem3  22116  mdetunilem9  22122  axtgupdim2  27753  axtgeucl  27754  wwlksnextprop  29197  measdivcst  33253  btwnouttr2  35025  btwnexch2  35026  cgrsub  35048  btwnconn1lem2  35091  btwnconn1lem5  35094  btwnconn1lem6  35095  segcon2  35108  btwnoutside  35128  broutsideof3  35129  outsideoftr  35132  outsideofeq  35133  lineelsb2  35151  relowlssretop  36292  lshpkrlem6  38033  reladdrsub  41306  onsupuni  42026  omabs2  42130  fmuldfeq  44347  stoweidlem5  44769  el0ldep  47195  ldepspr  47202
  Copyright terms: Public domain W3C validator