| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9415 eqinfd 9444 updjud 9894 fvf1tp 13758 mreexexlemd 17612 mhmlem 19001 nn0gsumfz 19921 mdetunilem3 22508 mdetunilem9 22514 axtgupdim2 28405 axtgeucl 28406 wwlksnextprop 29849 measdivcst 34221 btwnouttr2 36017 btwnexch2 36018 cgrsub 36040 btwnconn1lem2 36083 btwnconn1lem5 36086 btwnconn1lem6 36087 segcon2 36100 btwnoutside 36120 broutsideof3 36121 outsideoftr 36124 outsideofeq 36125 lineelsb2 36143 relowlssretop 37358 lshpkrlem6 39115 reladdrsub 42380 onsupuni 43225 omabs2 43328 modelaxreplem2 44976 fmuldfeq 45588 stoweidlem5 46010 el0ldep 48459 ldepspr 48466 |
| Copyright terms: Public domain | W3C validator |