| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9347 eqinfd 9376 updjud 9830 fvf1tp 13693 mreexexlemd 17550 mhmlem 18941 nn0gsumfz 19863 mdetunilem3 22499 mdetunilem9 22505 axtgupdim2 28420 axtgeucl 28421 wwlksnextprop 29861 measdivcst 34207 btwnouttr2 36016 btwnexch2 36017 cgrsub 36039 btwnconn1lem2 36082 btwnconn1lem5 36085 btwnconn1lem6 36086 segcon2 36099 btwnoutside 36119 broutsideof3 36120 outsideoftr 36123 outsideofeq 36124 lineelsb2 36142 relowlssretop 37357 lshpkrlem6 39114 reladdrsub 42378 onsupuni 43222 omabs2 43325 modelaxreplem2 44973 fmuldfeq 45584 stoweidlem5 46006 el0ldep 48471 ldepspr 48478 |
| Copyright terms: Public domain | W3C validator |