MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1463
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1127 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  eqsupd  9216  eqinfd  9244  updjud  9692  mreexexlemd  17353  mhmlem  18695  nn0gsumfz  19585  mdetunilem3  21763  mdetunilem9  21769  axtgupdim2  26832  axtgeucl  26833  wwlksnextprop  28277  measdivcst  32192  btwnouttr2  34324  btwnexch2  34325  cgrsub  34347  btwnconn1lem2  34390  btwnconn1lem5  34393  btwnconn1lem6  34394  segcon2  34407  btwnoutside  34427  broutsideof3  34428  outsideoftr  34431  outsideofeq  34432  lineelsb2  34450  relowlssretop  35534  lshpkrlem6  37129  reladdrsub  40368  fmuldfeq  43124  stoweidlem5  43546  el0ldep  45807  ldepspr  45814
  Copyright terms: Public domain W3C validator