| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9469 eqinfd 9498 updjud 9948 fvf1tp 13806 mreexexlemd 17656 mhmlem 19045 nn0gsumfz 19965 mdetunilem3 22552 mdetunilem9 22558 axtgupdim2 28450 axtgeucl 28451 wwlksnextprop 29894 measdivcst 34255 btwnouttr2 36040 btwnexch2 36041 cgrsub 36063 btwnconn1lem2 36106 btwnconn1lem5 36109 btwnconn1lem6 36110 segcon2 36123 btwnoutside 36143 broutsideof3 36144 outsideoftr 36147 outsideofeq 36148 lineelsb2 36166 relowlssretop 37381 lshpkrlem6 39133 reladdrsub 42428 onsupuni 43253 omabs2 43356 modelaxreplem2 45004 fmuldfeq 45612 stoweidlem5 46034 el0ldep 48442 ldepspr 48449 |
| Copyright terms: Public domain | W3C validator |