| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9341 eqinfd 9370 updjud 9827 fvf1tp 13693 mreexexlemd 17550 mhmlem 18975 nn0gsumfz 19896 mdetunilem3 22529 mdetunilem9 22535 axtgupdim2 28449 axtgeucl 28450 wwlksnextprop 29890 measdivcst 34237 btwnouttr2 36066 btwnexch2 36067 cgrsub 36089 btwnconn1lem2 36132 btwnconn1lem5 36135 btwnconn1lem6 36136 segcon2 36149 btwnoutside 36169 broutsideof3 36170 outsideoftr 36173 outsideofeq 36174 lineelsb2 36192 relowlssretop 37407 lshpkrlem6 39213 reladdrsub 42477 onsupuni 43321 omabs2 43424 modelaxreplem2 45071 fmuldfeq 45682 stoweidlem5 46102 el0ldep 48566 ldepspr 48573 |
| Copyright terms: Public domain | W3C validator |