MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1466
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  eqsupd  9384  eqinfd  9413  updjud  9865  fvf1tp  13729  mreexexlemd  17586  mhmlem  18977  nn0gsumfz  19899  mdetunilem3  22535  mdetunilem9  22541  axtgupdim2  28452  axtgeucl  28453  wwlksnextprop  29893  measdivcst  34208  btwnouttr2  36004  btwnexch2  36005  cgrsub  36027  btwnconn1lem2  36070  btwnconn1lem5  36073  btwnconn1lem6  36074  segcon2  36087  btwnoutside  36107  broutsideof3  36108  outsideoftr  36111  outsideofeq  36112  lineelsb2  36130  relowlssretop  37345  lshpkrlem6  39102  reladdrsub  42367  onsupuni  43212  omabs2  43315  modelaxreplem2  44963  fmuldfeq  45575  stoweidlem5  45997  el0ldep  48449  ldepspr  48456
  Copyright terms: Public domain W3C validator