![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: eqsupd 9526 eqinfd 9554 updjud 10003 fvf1tp 13840 mreexexlemd 17702 mhmlem 19102 nn0gsumfz 20026 mdetunilem3 22641 mdetunilem9 22647 axtgupdim2 28497 axtgeucl 28498 wwlksnextprop 29945 measdivcst 34188 btwnouttr2 35986 btwnexch2 35987 cgrsub 36009 btwnconn1lem2 36052 btwnconn1lem5 36055 btwnconn1lem6 36056 segcon2 36069 btwnoutside 36089 broutsideof3 36090 outsideoftr 36093 outsideofeq 36094 lineelsb2 36112 relowlssretop 37329 lshpkrlem6 39071 reladdrsub 42361 onsupuni 43190 omabs2 43294 fmuldfeq 45504 stoweidlem5 45926 el0ldep 48195 ldepspr 48202 |
Copyright terms: Public domain | W3C validator |