MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1466
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  eqsupd  9415  eqinfd  9444  updjud  9894  fvf1tp  13758  mreexexlemd  17612  mhmlem  19001  nn0gsumfz  19921  mdetunilem3  22508  mdetunilem9  22514  axtgupdim2  28405  axtgeucl  28406  wwlksnextprop  29849  measdivcst  34221  btwnouttr2  36017  btwnexch2  36018  cgrsub  36040  btwnconn1lem2  36083  btwnconn1lem5  36086  btwnconn1lem6  36087  segcon2  36100  btwnoutside  36120  broutsideof3  36121  outsideoftr  36124  outsideofeq  36125  lineelsb2  36143  relowlssretop  37358  lshpkrlem6  39115  reladdrsub  42380  onsupuni  43225  omabs2  43328  modelaxreplem2  44976  fmuldfeq  45588  stoweidlem5  46010  el0ldep  48459  ldepspr  48466
  Copyright terms: Public domain W3C validator