MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1463
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1127 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  eqsupd  9495  eqinfd  9523  updjud  9972  fvf1tp  13826  mreexexlemd  17689  mhmlem  19093  nn0gsumfz  20017  mdetunilem3  22636  mdetunilem9  22642  axtgupdim2  28494  axtgeucl  28495  wwlksnextprop  29942  measdivcst  34205  btwnouttr2  36004  btwnexch2  36005  cgrsub  36027  btwnconn1lem2  36070  btwnconn1lem5  36073  btwnconn1lem6  36074  segcon2  36087  btwnoutside  36107  broutsideof3  36108  outsideoftr  36111  outsideofeq  36112  lineelsb2  36130  relowlssretop  37346  lshpkrlem6  39097  reladdrsub  42392  onsupuni  43218  omabs2  43322  modelaxreplem2  44944  fmuldfeq  45539  stoweidlem5  45961  el0ldep  48312  ldepspr  48319
  Copyright terms: Public domain W3C validator