| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9384 eqinfd 9413 updjud 9863 fvf1tp 13727 mreexexlemd 17585 mhmlem 18976 nn0gsumfz 19898 mdetunilem3 22534 mdetunilem9 22540 axtgupdim2 28451 axtgeucl 28452 wwlksnextprop 29892 measdivcst 34207 btwnouttr2 36003 btwnexch2 36004 cgrsub 36026 btwnconn1lem2 36069 btwnconn1lem5 36072 btwnconn1lem6 36073 segcon2 36086 btwnoutside 36106 broutsideof3 36107 outsideoftr 36110 outsideofeq 36111 lineelsb2 36129 relowlssretop 37344 lshpkrlem6 39101 reladdrsub 42366 onsupuni 43211 omabs2 43314 modelaxreplem2 44962 fmuldfeq 45574 stoweidlem5 45996 el0ldep 48448 ldepspr 48455 |
| Copyright terms: Public domain | W3C validator |