Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: eqsupd 9216 eqinfd 9244 updjud 9692 mreexexlemd 17353 mhmlem 18695 nn0gsumfz 19585 mdetunilem3 21763 mdetunilem9 21769 axtgupdim2 26832 axtgeucl 26833 wwlksnextprop 28277 measdivcst 32192 btwnouttr2 34324 btwnexch2 34325 cgrsub 34347 btwnconn1lem2 34390 btwnconn1lem5 34393 btwnconn1lem6 34394 segcon2 34407 btwnoutside 34427 broutsideof3 34428 outsideoftr 34431 outsideofeq 34432 lineelsb2 34450 relowlssretop 35534 lshpkrlem6 37129 reladdrsub 40368 fmuldfeq 43124 stoweidlem5 43546 el0ldep 45807 ldepspr 45814 |
Copyright terms: Public domain | W3C validator |