MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3and Structured version   Visualization version   GIF version

Theorem mp3and 1466
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
mp3and.1 (𝜑𝜓)
mp3and.2 (𝜑𝜒)
mp3and.3 (𝜑𝜃)
mp3and.4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3and (𝜑𝜏)

Proof of Theorem mp3and
StepHypRef Expression
1 mp3and.1 . . 3 (𝜑𝜓)
2 mp3and.2 . . 3 (𝜑𝜒)
3 mp3and.3 . . 3 (𝜑𝜃)
41, 2, 33jca 1128 . 2 (𝜑 → (𝜓𝜒𝜃))
5 mp3and.4 . 2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
64, 5mpd 15 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  eqsupd  9347  eqinfd  9376  updjud  9830  fvf1tp  13693  mreexexlemd  17550  mhmlem  18941  nn0gsumfz  19863  mdetunilem3  22499  mdetunilem9  22505  axtgupdim2  28420  axtgeucl  28421  wwlksnextprop  29861  measdivcst  34207  btwnouttr2  36016  btwnexch2  36017  cgrsub  36039  btwnconn1lem2  36082  btwnconn1lem5  36085  btwnconn1lem6  36086  segcon2  36099  btwnoutside  36119  broutsideof3  36120  outsideoftr  36123  outsideofeq  36124  lineelsb2  36142  relowlssretop  37357  lshpkrlem6  39114  reladdrsub  42378  onsupuni  43222  omabs2  43325  modelaxreplem2  44973  fmuldfeq  45584  stoweidlem5  46006  el0ldep  48471  ldepspr  48478
  Copyright terms: Public domain W3C validator