Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (𝜑 → 𝜓) |
mp3and.2 | ⊢ (𝜑 → 𝜒) |
mp3and.3 | ⊢ (𝜑 → 𝜃) |
mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3and | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1130 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: eqsupd 9073 eqinfd 9101 updjud 9550 mreexexlemd 17147 mhmlem 18483 nn0gsumfz 19369 mdetunilem3 21511 mdetunilem9 21517 axtgupdim2 26562 axtgeucl 26563 wwlksnextprop 27996 measdivcst 31904 btwnouttr2 34061 btwnexch2 34062 cgrsub 34084 btwnconn1lem2 34127 btwnconn1lem5 34130 btwnconn1lem6 34131 segcon2 34144 btwnoutside 34164 broutsideof3 34165 outsideoftr 34168 outsideofeq 34169 lineelsb2 34187 relowlssretop 35271 lshpkrlem6 36866 reladdrsub 40076 fmuldfeq 42799 stoweidlem5 43221 el0ldep 45480 ldepspr 45487 |
Copyright terms: Public domain | W3C validator |