| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3and | Structured version Visualization version GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (𝜑 → 𝜓) |
| mp3and.2 | ⊢ (𝜑 → 𝜒) |
| mp3and.3 | ⊢ (𝜑 → 𝜃) |
| mp3and.4 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mp3and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp3and.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | mp3and.4 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 6 | 4, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: eqsupd 9384 eqinfd 9413 updjud 9865 fvf1tp 13729 mreexexlemd 17586 mhmlem 18977 nn0gsumfz 19899 mdetunilem3 22535 mdetunilem9 22541 axtgupdim2 28452 axtgeucl 28453 wwlksnextprop 29893 measdivcst 34208 btwnouttr2 36004 btwnexch2 36005 cgrsub 36027 btwnconn1lem2 36070 btwnconn1lem5 36073 btwnconn1lem6 36074 segcon2 36087 btwnoutside 36107 broutsideof3 36108 outsideoftr 36111 outsideofeq 36112 lineelsb2 36130 relowlssretop 37345 lshpkrlem6 39102 reladdrsub 42367 onsupuni 43212 omabs2 43315 modelaxreplem2 44963 fmuldfeq 45575 stoweidlem5 45997 el0ldep 48449 ldepspr 48456 |
| Copyright terms: Public domain | W3C validator |