| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsgrpsub | Structured version Visualization version GIF version | ||
| Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
| xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
| xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| xpsgrpsub.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| xpsgrpsub.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| xpsgrpsub.m | ⊢ · = (-g‘𝑅) |
| xpsgrpsub.n | ⊢ × = (-g‘𝑆) |
| xpsgrpsub.o | ⊢ − = (-g‘𝑇) |
| Ref | Expression |
|---|---|
| xpsgrpsub | ⊢ (𝜑 → (〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 2 | xpsinv.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
| 3 | xpsinv.y | . . . 4 ⊢ 𝑌 = (Base‘𝑆) | |
| 4 | xpsinv.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 5 | xpsinv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | xpsgrpsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | xpsgrpsub.m | . . . . . 6 ⊢ · = (-g‘𝑅) | |
| 9 | 2, 8 | grpsubcl 18933 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
| 10 | 4, 6, 7, 9 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) |
| 11 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 12 | xpsgrpsub.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 13 | xpsgrpsub.n | . . . . . 6 ⊢ × = (-g‘𝑆) | |
| 14 | 3, 13 | grpsubcl 18933 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵 × 𝐷) ∈ 𝑌) |
| 15 | 5, 11, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) |
| 16 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 17 | 2, 16, 4, 10, 7 | grpcld 18860 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) ∈ 𝑋) |
| 18 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 19 | 3, 18, 5, 15, 12 | grpcld 18860 | . . . 4 ⊢ (𝜑 → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) ∈ 𝑌) |
| 20 | eqid 2731 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 21 | 1, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20 | xpsadd 17478 | . . 3 ⊢ (𝜑 → (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈((𝐴 · 𝐶)(+g‘𝑅)𝐶), ((𝐵 × 𝐷)(+g‘𝑆)𝐷)〉) |
| 22 | 2, 16, 8 | grpnpcan 18945 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) = 𝐴) |
| 23 | 4, 6, 7, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) = 𝐴) |
| 24 | 3, 18, 13 | grpnpcan 18945 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) = 𝐵) |
| 25 | 5, 11, 12, 24 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) = 𝐵) |
| 26 | 23, 25 | opeq12d 4830 | . . 3 ⊢ (𝜑 → 〈((𝐴 · 𝐶)(+g‘𝑅)𝐶), ((𝐵 × 𝐷)(+g‘𝑆)𝐷)〉 = 〈𝐴, 𝐵〉) |
| 27 | 21, 26 | eqtrd 2766 | . 2 ⊢ (𝜑 → (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉) |
| 28 | 1 | xpsgrp 18972 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
| 29 | 4, 5, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
| 30 | 6, 11 | opelxpd 5653 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 31 | 1, 2, 3, 4, 5 | xpsbas 17476 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 32 | 30, 31 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (Base‘𝑇)) |
| 33 | 7, 12 | opelxpd 5653 | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌)) |
| 34 | 33, 31 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (Base‘𝑇)) |
| 35 | 10, 15 | opelxpd 5653 | . . . 4 ⊢ (𝜑 → 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (𝑋 × 𝑌)) |
| 36 | 35, 31 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (Base‘𝑇)) |
| 37 | eqid 2731 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 38 | xpsgrpsub.o | . . . 4 ⊢ − = (-g‘𝑇) | |
| 39 | 37, 20, 38 | grpsubadd 18941 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ (〈𝐴, 𝐵〉 ∈ (Base‘𝑇) ∧ 〈𝐶, 𝐷〉 ∈ (Base‘𝑇) ∧ 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (Base‘𝑇))) → ((〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ↔ (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉)) |
| 40 | 29, 32, 34, 36, 39 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ↔ (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉)) |
| 41 | 27, 40 | mpbird 257 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 ×s cxps 17410 Grpcgrp 18846 -gcsg 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-imas 17412 df-xps 17414 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 |
| This theorem is referenced by: pzriprng1ALT 21433 |
| Copyright terms: Public domain | W3C validator |