MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrpsub Structured version   Visualization version   GIF version

Theorem xpsgrpsub 19079
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsgrpsub.c (𝜑𝐶𝑋)
xpsgrpsub.d (𝜑𝐷𝑌)
xpsgrpsub.m · = (-g𝑅)
xpsgrpsub.n × = (-g𝑆)
xpsgrpsub.o = (-g𝑇)
Assertion
Ref Expression
xpsgrpsub (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)

Proof of Theorem xpsgrpsub
StepHypRef Expression
1 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
2 xpsinv.x . . . 4 𝑋 = (Base‘𝑅)
3 xpsinv.y . . . 4 𝑌 = (Base‘𝑆)
4 xpsinv.r . . . 4 (𝜑𝑅 ∈ Grp)
5 xpsinv.s . . . 4 (𝜑𝑆 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
7 xpsgrpsub.c . . . . 5 (𝜑𝐶𝑋)
8 xpsgrpsub.m . . . . . 6 · = (-g𝑅)
92, 8grpsubcl 19038 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
104, 6, 7, 9syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
11 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
12 xpsgrpsub.d . . . . 5 (𝜑𝐷𝑌)
13 xpsgrpsub.n . . . . . 6 × = (-g𝑆)
143, 13grpsubcl 19038 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → (𝐵 × 𝐷) ∈ 𝑌)
155, 11, 12, 14syl3anc 1373 . . . 4 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
16 eqid 2737 . . . . 5 (+g𝑅) = (+g𝑅)
172, 16, 4, 10, 7grpcld 18965 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) ∈ 𝑋)
18 eqid 2737 . . . . 5 (+g𝑆) = (+g𝑆)
193, 18, 5, 15, 12grpcld 18965 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) ∈ 𝑌)
20 eqid 2737 . . . 4 (+g𝑇) = (+g𝑇)
211, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20xpsadd 17619 . . 3 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩)
222, 16, 8grpnpcan 19050 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
234, 6, 7, 22syl3anc 1373 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
243, 18, 13grpnpcan 19050 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
255, 11, 12, 24syl3anc 1373 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
2623, 25opeq12d 4881 . . 3 (𝜑 → ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩ = ⟨𝐴, 𝐵⟩)
2721, 26eqtrd 2777 . 2 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩)
281xpsgrp 19077 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
294, 5, 28syl2anc 584 . . 3 (𝜑𝑇 ∈ Grp)
306, 11opelxpd 5724 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
311, 2, 3, 4, 5xpsbas 17617 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2843 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
337, 12opelxpd 5724 . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2843 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇))
3510, 15opelxpd 5724 . . . 4 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
3635, 31eleqtrd 2843 . . 3 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))
37 eqid 2737 . . . 4 (Base‘𝑇) = (Base‘𝑇)
38 xpsgrpsub.o . . . 4 = (-g𝑇)
3937, 20, 38grpsubadd 19046 . . 3 ((𝑇 ∈ Grp ∧ (⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇) ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))) → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4029, 32, 34, 36, 39syl13anc 1374 . 2 (𝜑 → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4127, 40mpbird 257 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cop 4632   × cxp 5683  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297   ×s cxps 17551  Grpcgrp 18951  -gcsg 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-imas 17553  df-xps 17555  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956
This theorem is referenced by:  pzriprng1ALT  21507
  Copyright terms: Public domain W3C validator