| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsgrpsub | Structured version Visualization version GIF version | ||
| Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| xpsinv.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpsinv.x | ⊢ 𝑋 = (Base‘𝑅) |
| xpsinv.y | ⊢ 𝑌 = (Base‘𝑆) |
| xpsinv.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| xpsinv.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| xpsinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| xpsinv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| xpsgrpsub.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| xpsgrpsub.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| xpsgrpsub.m | ⊢ · = (-g‘𝑅) |
| xpsgrpsub.n | ⊢ × = (-g‘𝑆) |
| xpsgrpsub.o | ⊢ − = (-g‘𝑇) |
| Ref | Expression |
|---|---|
| xpsgrpsub | ⊢ (𝜑 → (〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 2 | xpsinv.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
| 3 | xpsinv.y | . . . 4 ⊢ 𝑌 = (Base‘𝑆) | |
| 4 | xpsinv.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 5 | xpsinv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 6 | xpsinv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | xpsgrpsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | xpsgrpsub.m | . . . . . 6 ⊢ · = (-g‘𝑅) | |
| 9 | 2, 8 | grpsubcl 18918 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
| 10 | 4, 6, 7, 9 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) |
| 11 | xpsinv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 12 | xpsgrpsub.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 13 | xpsgrpsub.n | . . . . . 6 ⊢ × = (-g‘𝑆) | |
| 14 | 3, 13 | grpsubcl 18918 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵 × 𝐷) ∈ 𝑌) |
| 15 | 5, 11, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) |
| 16 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 17 | 2, 16, 4, 10, 7 | grpcld 18845 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) ∈ 𝑋) |
| 18 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 19 | 3, 18, 5, 15, 12 | grpcld 18845 | . . . 4 ⊢ (𝜑 → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) ∈ 𝑌) |
| 20 | eqid 2729 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 21 | 1, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20 | xpsadd 17497 | . . 3 ⊢ (𝜑 → (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈((𝐴 · 𝐶)(+g‘𝑅)𝐶), ((𝐵 × 𝐷)(+g‘𝑆)𝐷)〉) |
| 22 | 2, 16, 8 | grpnpcan 18930 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) = 𝐴) |
| 23 | 4, 6, 7, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐶)(+g‘𝑅)𝐶) = 𝐴) |
| 24 | 3, 18, 13 | grpnpcan 18930 | . . . . 5 ⊢ ((𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) = 𝐵) |
| 25 | 5, 11, 12, 24 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐵 × 𝐷)(+g‘𝑆)𝐷) = 𝐵) |
| 26 | 23, 25 | opeq12d 4835 | . . 3 ⊢ (𝜑 → 〈((𝐴 · 𝐶)(+g‘𝑅)𝐶), ((𝐵 × 𝐷)(+g‘𝑆)𝐷)〉 = 〈𝐴, 𝐵〉) |
| 27 | 21, 26 | eqtrd 2764 | . 2 ⊢ (𝜑 → (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉) |
| 28 | 1 | xpsgrp 18957 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp) |
| 29 | 4, 5, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Grp) |
| 30 | 6, 11 | opelxpd 5662 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 31 | 1, 2, 3, 4, 5 | xpsbas 17495 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
| 32 | 30, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (Base‘𝑇)) |
| 33 | 7, 12 | opelxpd 5662 | . . . 4 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌)) |
| 34 | 33, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (Base‘𝑇)) |
| 35 | 10, 15 | opelxpd 5662 | . . . 4 ⊢ (𝜑 → 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (𝑋 × 𝑌)) |
| 36 | 35, 31 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (Base‘𝑇)) |
| 37 | eqid 2729 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 38 | xpsgrpsub.o | . . . 4 ⊢ − = (-g‘𝑇) | |
| 39 | 37, 20, 38 | grpsubadd 18926 | . . 3 ⊢ ((𝑇 ∈ Grp ∧ (〈𝐴, 𝐵〉 ∈ (Base‘𝑇) ∧ 〈𝐶, 𝐷〉 ∈ (Base‘𝑇) ∧ 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ∈ (Base‘𝑇))) → ((〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ↔ (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉)) |
| 40 | 29, 32, 34, 36, 39 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉 ↔ (〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉(+g‘𝑇)〈𝐶, 𝐷〉) = 〈𝐴, 𝐵〉)) |
| 41 | 27, 40 | mpbird 257 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 − 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4585 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 ×s cxps 17429 Grpcgrp 18831 -gcsg 18833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-prds 17370 df-imas 17431 df-xps 17433 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 |
| This theorem is referenced by: pzriprng1ALT 21422 |
| Copyright terms: Public domain | W3C validator |