MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrpsub Structured version   Visualization version   GIF version

Theorem xpsgrpsub 18959
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsgrpsub.c (𝜑𝐶𝑋)
xpsgrpsub.d (𝜑𝐷𝑌)
xpsgrpsub.m · = (-g𝑅)
xpsgrpsub.n × = (-g𝑆)
xpsgrpsub.o = (-g𝑇)
Assertion
Ref Expression
xpsgrpsub (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)

Proof of Theorem xpsgrpsub
StepHypRef Expression
1 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
2 xpsinv.x . . . 4 𝑋 = (Base‘𝑅)
3 xpsinv.y . . . 4 𝑌 = (Base‘𝑆)
4 xpsinv.r . . . 4 (𝜑𝑅 ∈ Grp)
5 xpsinv.s . . . 4 (𝜑𝑆 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
7 xpsgrpsub.c . . . . 5 (𝜑𝐶𝑋)
8 xpsgrpsub.m . . . . . 6 · = (-g𝑅)
92, 8grpsubcl 18918 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
104, 6, 7, 9syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
11 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
12 xpsgrpsub.d . . . . 5 (𝜑𝐷𝑌)
13 xpsgrpsub.n . . . . . 6 × = (-g𝑆)
143, 13grpsubcl 18918 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → (𝐵 × 𝐷) ∈ 𝑌)
155, 11, 12, 14syl3anc 1373 . . . 4 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
16 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
172, 16, 4, 10, 7grpcld 18845 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) ∈ 𝑋)
18 eqid 2729 . . . . 5 (+g𝑆) = (+g𝑆)
193, 18, 5, 15, 12grpcld 18845 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) ∈ 𝑌)
20 eqid 2729 . . . 4 (+g𝑇) = (+g𝑇)
211, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20xpsadd 17497 . . 3 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩)
222, 16, 8grpnpcan 18930 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
234, 6, 7, 22syl3anc 1373 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
243, 18, 13grpnpcan 18930 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
255, 11, 12, 24syl3anc 1373 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
2623, 25opeq12d 4835 . . 3 (𝜑 → ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩ = ⟨𝐴, 𝐵⟩)
2721, 26eqtrd 2764 . 2 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩)
281xpsgrp 18957 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
294, 5, 28syl2anc 584 . . 3 (𝜑𝑇 ∈ Grp)
306, 11opelxpd 5662 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
311, 2, 3, 4, 5xpsbas 17495 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2830 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
337, 12opelxpd 5662 . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2830 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇))
3510, 15opelxpd 5662 . . . 4 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
3635, 31eleqtrd 2830 . . 3 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))
37 eqid 2729 . . . 4 (Base‘𝑇) = (Base‘𝑇)
38 xpsgrpsub.o . . . 4 = (-g𝑇)
3937, 20, 38grpsubadd 18926 . . 3 ((𝑇 ∈ Grp ∧ (⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇) ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))) → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4029, 32, 34, 36, 39syl13anc 1374 . 2 (𝜑 → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4127, 40mpbird 257 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180   ×s cxps 17429  Grpcgrp 18831  -gcsg 18833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-prds 17370  df-imas 17431  df-xps 17433  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836
This theorem is referenced by:  pzriprng1ALT  21422
  Copyright terms: Public domain W3C validator