MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrpsub Structured version   Visualization version   GIF version

Theorem xpsgrpsub 19092
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsgrpsub.c (𝜑𝐶𝑋)
xpsgrpsub.d (𝜑𝐷𝑌)
xpsgrpsub.m · = (-g𝑅)
xpsgrpsub.n × = (-g𝑆)
xpsgrpsub.o = (-g𝑇)
Assertion
Ref Expression
xpsgrpsub (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)

Proof of Theorem xpsgrpsub
StepHypRef Expression
1 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
2 xpsinv.x . . . 4 𝑋 = (Base‘𝑅)
3 xpsinv.y . . . 4 𝑌 = (Base‘𝑆)
4 xpsinv.r . . . 4 (𝜑𝑅 ∈ Grp)
5 xpsinv.s . . . 4 (𝜑𝑆 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
7 xpsgrpsub.c . . . . 5 (𝜑𝐶𝑋)
8 xpsgrpsub.m . . . . . 6 · = (-g𝑅)
92, 8grpsubcl 19051 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
104, 6, 7, 9syl3anc 1370 . . . 4 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
11 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
12 xpsgrpsub.d . . . . 5 (𝜑𝐷𝑌)
13 xpsgrpsub.n . . . . . 6 × = (-g𝑆)
143, 13grpsubcl 19051 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → (𝐵 × 𝐷) ∈ 𝑌)
155, 11, 12, 14syl3anc 1370 . . . 4 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
16 eqid 2735 . . . . 5 (+g𝑅) = (+g𝑅)
172, 16, 4, 10, 7grpcld 18978 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) ∈ 𝑋)
18 eqid 2735 . . . . 5 (+g𝑆) = (+g𝑆)
193, 18, 5, 15, 12grpcld 18978 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) ∈ 𝑌)
20 eqid 2735 . . . 4 (+g𝑇) = (+g𝑇)
211, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20xpsadd 17621 . . 3 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩)
222, 16, 8grpnpcan 19063 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
234, 6, 7, 22syl3anc 1370 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
243, 18, 13grpnpcan 19063 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
255, 11, 12, 24syl3anc 1370 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
2623, 25opeq12d 4886 . . 3 (𝜑 → ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩ = ⟨𝐴, 𝐵⟩)
2721, 26eqtrd 2775 . 2 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩)
281xpsgrp 19090 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
294, 5, 28syl2anc 584 . . 3 (𝜑𝑇 ∈ Grp)
306, 11opelxpd 5728 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
311, 2, 3, 4, 5xpsbas 17619 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2841 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
337, 12opelxpd 5728 . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2841 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇))
3510, 15opelxpd 5728 . . . 4 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
3635, 31eleqtrd 2841 . . 3 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))
37 eqid 2735 . . . 4 (Base‘𝑇) = (Base‘𝑇)
38 xpsgrpsub.o . . . 4 = (-g𝑇)
3937, 20, 38grpsubadd 19059 . . 3 ((𝑇 ∈ Grp ∧ (⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇) ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))) → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4029, 32, 34, 36, 39syl13anc 1371 . 2 (𝜑 → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4127, 40mpbird 257 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cop 4637   × cxp 5687  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298   ×s cxps 17553  Grpcgrp 18964  -gcsg 18966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-imas 17555  df-xps 17557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969
This theorem is referenced by:  pzriprng1ALT  21525
  Copyright terms: Public domain W3C validator