MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrpsub Structured version   Visualization version   GIF version

Theorem xpsgrpsub 18969
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025.)
Hypotheses
Ref Expression
xpsinv.t 𝑇 = (𝑅 ×s 𝑆)
xpsinv.x 𝑋 = (Base‘𝑅)
xpsinv.y 𝑌 = (Base‘𝑆)
xpsinv.r (𝜑𝑅 ∈ Grp)
xpsinv.s (𝜑𝑆 ∈ Grp)
xpsinv.a (𝜑𝐴𝑋)
xpsinv.b (𝜑𝐵𝑌)
xpsgrpsub.c (𝜑𝐶𝑋)
xpsgrpsub.d (𝜑𝐷𝑌)
xpsgrpsub.m · = (-g𝑅)
xpsgrpsub.n × = (-g𝑆)
xpsgrpsub.o = (-g𝑇)
Assertion
Ref Expression
xpsgrpsub (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)

Proof of Theorem xpsgrpsub
StepHypRef Expression
1 xpsinv.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
2 xpsinv.x . . . 4 𝑋 = (Base‘𝑅)
3 xpsinv.y . . . 4 𝑌 = (Base‘𝑆)
4 xpsinv.r . . . 4 (𝜑𝑅 ∈ Grp)
5 xpsinv.s . . . 4 (𝜑𝑆 ∈ Grp)
6 xpsinv.a . . . . 5 (𝜑𝐴𝑋)
7 xpsgrpsub.c . . . . 5 (𝜑𝐶𝑋)
8 xpsgrpsub.m . . . . . 6 · = (-g𝑅)
92, 8grpsubcl 18928 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
104, 6, 7, 9syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
11 xpsinv.b . . . . 5 (𝜑𝐵𝑌)
12 xpsgrpsub.d . . . . 5 (𝜑𝐷𝑌)
13 xpsgrpsub.n . . . . . 6 × = (-g𝑆)
143, 13grpsubcl 18928 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → (𝐵 × 𝐷) ∈ 𝑌)
155, 11, 12, 14syl3anc 1373 . . . 4 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
16 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
172, 16, 4, 10, 7grpcld 18855 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) ∈ 𝑋)
18 eqid 2729 . . . . 5 (+g𝑆) = (+g𝑆)
193, 18, 5, 15, 12grpcld 18855 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) ∈ 𝑌)
20 eqid 2729 . . . 4 (+g𝑇) = (+g𝑇)
211, 2, 3, 4, 5, 10, 15, 7, 12, 17, 19, 16, 18, 20xpsadd 17513 . . 3 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩)
222, 16, 8grpnpcan 18940 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋) → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
234, 6, 7, 22syl3anc 1373 . . . 4 (𝜑 → ((𝐴 · 𝐶)(+g𝑅)𝐶) = 𝐴)
243, 18, 13grpnpcan 18940 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌) → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
255, 11, 12, 24syl3anc 1373 . . . 4 (𝜑 → ((𝐵 × 𝐷)(+g𝑆)𝐷) = 𝐵)
2623, 25opeq12d 4841 . . 3 (𝜑 → ⟨((𝐴 · 𝐶)(+g𝑅)𝐶), ((𝐵 × 𝐷)(+g𝑆)𝐷)⟩ = ⟨𝐴, 𝐵⟩)
2721, 26eqtrd 2764 . 2 (𝜑 → (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩)
281xpsgrp 18967 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
294, 5, 28syl2anc 584 . . 3 (𝜑𝑇 ∈ Grp)
306, 11opelxpd 5670 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
311, 2, 3, 4, 5xpsbas 17511 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
3230, 31eleqtrd 2830 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇))
337, 12opelxpd 5670 . . . 4 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
3433, 31eleqtrd 2830 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇))
3510, 15opelxpd 5670 . . . 4 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
3635, 31eleqtrd 2830 . . 3 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))
37 eqid 2729 . . . 4 (Base‘𝑇) = (Base‘𝑇)
38 xpsgrpsub.o . . . 4 = (-g𝑇)
3937, 20, 38grpsubadd 18936 . . 3 ((𝑇 ∈ Grp ∧ (⟨𝐴, 𝐵⟩ ∈ (Base‘𝑇) ∧ ⟨𝐶, 𝐷⟩ ∈ (Base‘𝑇) ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (Base‘𝑇))) → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4029, 32, 34, 36, 39syl13anc 1374 . 2 (𝜑 → ((⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ↔ (⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩(+g𝑇)⟨𝐶, 𝐷⟩) = ⟨𝐴, 𝐵⟩))
4127, 40mpbird 257 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196   ×s cxps 17445  Grpcgrp 18841  -gcsg 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-xps 17449  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846
This theorem is referenced by:  pzriprng1ALT  21382
  Copyright terms: Public domain W3C validator