| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpllr 775 | . . . . . . . 8
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝐹‘𝑖) = 𝑎) | 
| 2 |  | simpr 484 | . . . . . . . 8
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝐹‘𝑗) = 𝑏) | 
| 3 | 1, 2 | oveq12d 7450 | . . . . . . 7
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → ((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) = (𝑎 ⨣ 𝑏)) | 
| 4 |  | simp-5l 784 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → 𝜑) | 
| 5 |  | ghmgrp.f | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 6 | 4, 5 | syl3an1 1163 | . . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 7 |  | simp-4r 783 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → 𝑖 ∈ 𝑋) | 
| 8 |  | simplr 768 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → 𝑗 ∈ 𝑋) | 
| 9 | 6, 7, 8 | mhmlem 19081 | . . . . . . . 8
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝐹‘(𝑖 + 𝑗)) = ((𝐹‘𝑖) ⨣ (𝐹‘𝑗))) | 
| 10 |  | ghmgrp.1 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | 
| 11 |  | fof 6819 | . . . . . . . . . . 11
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | 
| 13 | 12 | ad5antr 734 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → 𝐹:𝑋⟶𝑌) | 
| 14 |  | mhmmnd.3 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 15 | 14 | ad5antr 734 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → 𝐺 ∈ Mnd) | 
| 16 |  | ghmgrp.x | . . . . . . . . . . 11
⊢ 𝑋 = (Base‘𝐺) | 
| 17 |  | ghmgrp.p | . . . . . . . . . . 11
⊢  + =
(+g‘𝐺) | 
| 18 | 16, 17 | mndcl 18756 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) → (𝑖 + 𝑗) ∈ 𝑋) | 
| 19 | 15, 7, 8, 18 | syl3anc 1372 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝑖 + 𝑗) ∈ 𝑋) | 
| 20 | 13, 19 | ffvelcdmd 7104 | . . . . . . . 8
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝐹‘(𝑖 + 𝑗)) ∈ 𝑌) | 
| 21 | 9, 20 | eqeltrrd 2841 | . . . . . . 7
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → ((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) ∈ 𝑌) | 
| 22 | 3, 21 | eqeltrrd 2841 | . . . . . 6
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → (𝑎 ⨣ 𝑏) ∈ 𝑌) | 
| 23 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌) → 𝑏 ∈ 𝑌) | 
| 24 |  | foelcdmi 6969 | . . . . . . . 8
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑏 ∈ 𝑌) → ∃𝑗 ∈ 𝑋 (𝐹‘𝑗) = 𝑏) | 
| 25 | 10, 23, 24 | syl2an 596 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) → ∃𝑗 ∈ 𝑋 (𝐹‘𝑗) = 𝑏) | 
| 26 | 25 | ad2antrr 726 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ∃𝑗 ∈ 𝑋 (𝐹‘𝑗) = 𝑏) | 
| 27 | 22, 26 | r19.29a 3161 | . . . . 5
⊢ ((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑎 ⨣ 𝑏) ∈ 𝑌) | 
| 28 |  | simpl 482 | . . . . . 6
⊢ ((𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌) → 𝑎 ∈ 𝑌) | 
| 29 |  | foelcdmi 6969 | . . . . . 6
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 30 | 10, 28, 29 | syl2an 596 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 31 | 27, 30 | r19.29a 3161 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) → (𝑎 ⨣ 𝑏) ∈ 𝑌) | 
| 32 |  | simpll 766 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑐 ∈ 𝑌) → 𝜑) | 
| 33 |  | simplrl 776 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑐 ∈ 𝑌) → 𝑎 ∈ 𝑌) | 
| 34 |  | simplrr 777 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑐 ∈ 𝑌) → 𝑏 ∈ 𝑌) | 
| 35 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑐 ∈ 𝑌) → 𝑐 ∈ 𝑌) | 
| 36 | 14 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) → 𝐺 ∈ Mnd) | 
| 37 | 36 | ad5antr 734 | . . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → 𝐺 ∈ Mnd) | 
| 38 |  | simp-6r 787 | . . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → 𝑖 ∈ 𝑋) | 
| 39 |  | simp-4r 783 | . . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → 𝑗 ∈ 𝑋) | 
| 40 |  | simplr 768 | . . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → 𝑘 ∈ 𝑋) | 
| 41 | 16, 17 | mndass 18757 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Mnd ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋)) → ((𝑖 + 𝑗) + 𝑘) = (𝑖 + (𝑗 + 𝑘))) | 
| 42 | 37, 38, 39, 40, 41 | syl13anc 1373 | . . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝑖 + 𝑗) + 𝑘) = (𝑖 + (𝑗 + 𝑘))) | 
| 43 | 42 | fveq2d 6909 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘((𝑖 + 𝑗) + 𝑘)) = (𝐹‘(𝑖 + (𝑗 + 𝑘)))) | 
| 44 |  | simp-7l 788 | . . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → 𝜑) | 
| 45 | 44, 5 | syl3an1 1163 | . . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧
(𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 46 | 37, 38, 39, 18 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝑖 + 𝑗) ∈ 𝑋) | 
| 47 | 45, 46, 40 | mhmlem 19081 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘((𝑖 + 𝑗) + 𝑘)) = ((𝐹‘(𝑖 + 𝑗)) ⨣ (𝐹‘𝑘))) | 
| 48 | 16, 17 | mndcl 18756 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋) → (𝑗 + 𝑘) ∈ 𝑋) | 
| 49 | 37, 39, 40, 48 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝑗 + 𝑘) ∈ 𝑋) | 
| 50 | 45, 38, 49 | mhmlem 19081 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘(𝑖 + (𝑗 + 𝑘))) = ((𝐹‘𝑖) ⨣ (𝐹‘(𝑗 + 𝑘)))) | 
| 51 | 43, 47, 50 | 3eqtr3d 2784 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘(𝑖 + 𝑗)) ⨣ (𝐹‘𝑘)) = ((𝐹‘𝑖) ⨣ (𝐹‘(𝑗 + 𝑘)))) | 
| 52 |  | simp1 1136 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) → 𝜑) | 
| 53 | 52, 5 | syl3an1 1163 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 54 |  | simp2 1137 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) → 𝑖 ∈ 𝑋) | 
| 55 |  | simp3 1138 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | 
| 56 | 53, 54, 55 | mhmlem 19081 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋) → (𝐹‘(𝑖 + 𝑗)) = ((𝐹‘𝑖) ⨣ (𝐹‘𝑗))) | 
| 57 | 44, 38, 39, 56 | syl3anc 1372 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘(𝑖 + 𝑗)) = ((𝐹‘𝑖) ⨣ (𝐹‘𝑗))) | 
| 58 | 57 | oveq1d 7447 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘(𝑖 + 𝑗)) ⨣ (𝐹‘𝑘)) = (((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) ⨣ (𝐹‘𝑘))) | 
| 59 | 45, 39, 40 | mhmlem 19081 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘(𝑗 + 𝑘)) = ((𝐹‘𝑗) ⨣ (𝐹‘𝑘))) | 
| 60 | 59 | oveq2d 7448 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘𝑖) ⨣ (𝐹‘(𝑗 + 𝑘))) = ((𝐹‘𝑖) ⨣ ((𝐹‘𝑗) ⨣ (𝐹‘𝑘)))) | 
| 61 | 51, 58, 60 | 3eqtr3d 2784 | . . . . . . . . . 10
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) ⨣ (𝐹‘𝑘)) = ((𝐹‘𝑖) ⨣ ((𝐹‘𝑗) ⨣ (𝐹‘𝑘)))) | 
| 62 |  | simp-5r 785 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘𝑖) = 𝑎) | 
| 63 |  | simpllr 775 | . . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘𝑗) = 𝑏) | 
| 64 | 62, 63 | oveq12d 7450 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) = (𝑎 ⨣ 𝑏)) | 
| 65 |  | simpr 484 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (𝐹‘𝑘) = 𝑐) | 
| 66 | 64, 65 | oveq12d 7450 | . . . . . . . . . 10
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → (((𝐹‘𝑖) ⨣ (𝐹‘𝑗)) ⨣ (𝐹‘𝑘)) = ((𝑎 ⨣ 𝑏) ⨣ 𝑐)) | 
| 67 | 63, 65 | oveq12d 7450 | . . . . . . . . . . 11
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘𝑗) ⨣ (𝐹‘𝑘)) = (𝑏 ⨣ 𝑐)) | 
| 68 | 62, 67 | oveq12d 7450 | . . . . . . . . . 10
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝐹‘𝑖) ⨣ ((𝐹‘𝑗) ⨣ (𝐹‘𝑘))) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 69 | 61, 66, 68 | 3eqtr3d 2784 | . . . . . . . . 9
⊢
((((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) ∧ 𝑘 ∈ 𝑋) ∧ (𝐹‘𝑘) = 𝑐) → ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 70 |  | foelcdmi 6969 | . . . . . . . . . . . 12
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑐 ∈ 𝑌) → ∃𝑘 ∈ 𝑋 (𝐹‘𝑘) = 𝑐) | 
| 71 | 10, 70 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑌) → ∃𝑘 ∈ 𝑋 (𝐹‘𝑘) = 𝑐) | 
| 72 | 71 | 3ad2antr3 1190 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) → ∃𝑘 ∈ 𝑋 (𝐹‘𝑘) = 𝑐) | 
| 73 | 72 | ad4antr 732 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → ∃𝑘 ∈ 𝑋 (𝐹‘𝑘) = 𝑐) | 
| 74 | 69, 73 | r19.29a 3161 | . . . . . . . 8
⊢
((((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑗 ∈ 𝑋) ∧ (𝐹‘𝑗) = 𝑏) → ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 75 | 25 | 3adantr3 1171 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) → ∃𝑗 ∈ 𝑋 (𝐹‘𝑗) = 𝑏) | 
| 76 | 75 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ∃𝑗 ∈ 𝑋 (𝐹‘𝑗) = 𝑏) | 
| 77 | 74, 76 | r19.29a 3161 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 78 | 30 | 3adantr3 1171 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 79 | 77, 78 | r19.29a 3161 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌)) → ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 80 | 32, 33, 34, 35, 79 | syl13anc 1373 | . . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) ∧ 𝑐 ∈ 𝑌) → ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 81 | 80 | ralrimiva 3145 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) → ∀𝑐 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) | 
| 82 | 31, 81 | jca 511 | . . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌)) → ((𝑎 ⨣ 𝑏) ∈ 𝑌 ∧ ∀𝑐 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐)))) | 
| 83 | 82 | ralrimivva 3201 | . 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑌 ∀𝑏 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ∈ 𝑌 ∧ ∀𝑐 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐)))) | 
| 84 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 85 | 16, 84 | mndidcl 18763 | . . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝑋) | 
| 86 | 14, 85 | syl 17 | . . . 4
⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) | 
| 87 | 12, 86 | ffvelcdmd 7104 | . . 3
⊢ (𝜑 → (𝐹‘(0g‘𝐺)) ∈ 𝑌) | 
| 88 |  | simplll 774 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝜑) | 
| 89 | 88, 5 | syl3an1 1163 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 90 | 14 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝐺 ∈ Mnd) | 
| 91 | 90, 85 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (0g‘𝐺) ∈ 𝑋) | 
| 92 |  | simplr 768 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝑖 ∈ 𝑋) | 
| 93 | 89, 91, 92 | mhmlem 19081 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘((0g‘𝐺) + 𝑖)) = ((𝐹‘(0g‘𝐺)) ⨣ (𝐹‘𝑖))) | 
| 94 | 16, 17, 84 | mndlid 18768 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → ((0g‘𝐺) + 𝑖) = 𝑖) | 
| 95 | 90, 92, 94 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((0g‘𝐺) + 𝑖) = 𝑖) | 
| 96 | 95 | fveq2d 6909 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘((0g‘𝐺) + 𝑖)) = (𝐹‘𝑖)) | 
| 97 | 93, 96 | eqtr3d 2778 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘(0g‘𝐺)) ⨣ (𝐹‘𝑖)) = (𝐹‘𝑖)) | 
| 98 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘𝑖) = 𝑎) | 
| 99 | 98 | oveq2d 7448 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘(0g‘𝐺)) ⨣ (𝐹‘𝑖)) = ((𝐹‘(0g‘𝐺)) ⨣ 𝑎)) | 
| 100 | 97, 99, 98 | 3eqtr3d 2784 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎) | 
| 101 | 89, 92, 91 | mhmlem 19081 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + (0g‘𝐺))) = ((𝐹‘𝑖) ⨣ (𝐹‘(0g‘𝐺)))) | 
| 102 | 16, 17, 84 | mndrid 18769 | . . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → (𝑖 + (0g‘𝐺)) = 𝑖) | 
| 103 | 90, 92, 102 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑖 + (0g‘𝐺)) = 𝑖) | 
| 104 | 103 | fveq2d 6909 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + (0g‘𝐺))) = (𝐹‘𝑖)) | 
| 105 | 101, 104 | eqtr3d 2778 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘(0g‘𝐺))) = (𝐹‘𝑖)) | 
| 106 | 98 | oveq1d 7447 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘(0g‘𝐺))) = (𝑎 ⨣ (𝐹‘(0g‘𝐺)))) | 
| 107 | 105, 106,
98 | 3eqtr3d 2784 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎) | 
| 108 | 100, 107 | jca 511 | . . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎)) | 
| 109 | 10, 29 | sylan 580 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 110 | 108, 109 | r19.29a 3161 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → (((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎)) | 
| 111 | 110 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑌 (((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎)) | 
| 112 |  | oveq1 7439 | . . . . . 6
⊢ (𝑑 = (𝐹‘(0g‘𝐺)) → (𝑑 ⨣ 𝑎) = ((𝐹‘(0g‘𝐺)) ⨣ 𝑎)) | 
| 113 | 112 | eqeq1d 2738 | . . . . 5
⊢ (𝑑 = (𝐹‘(0g‘𝐺)) → ((𝑑 ⨣ 𝑎) = 𝑎 ↔ ((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎)) | 
| 114 | 113 | ovanraleqv 7456 | . . . 4
⊢ (𝑑 = (𝐹‘(0g‘𝐺)) → (∀𝑎 ∈ 𝑌 ((𝑑 ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ 𝑑) = 𝑎) ↔ ∀𝑎 ∈ 𝑌 (((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎))) | 
| 115 | 114 | rspcev 3621 | . . 3
⊢ (((𝐹‘(0g‘𝐺)) ∈ 𝑌 ∧ ∀𝑎 ∈ 𝑌 (((𝐹‘(0g‘𝐺)) ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ (𝐹‘(0g‘𝐺))) = 𝑎)) → ∃𝑑 ∈ 𝑌 ∀𝑎 ∈ 𝑌 ((𝑑 ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ 𝑑) = 𝑎)) | 
| 116 | 87, 111, 115 | syl2anc 584 | . 2
⊢ (𝜑 → ∃𝑑 ∈ 𝑌 ∀𝑎 ∈ 𝑌 ((𝑑 ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ 𝑑) = 𝑎)) | 
| 117 |  | ghmgrp.y | . . 3
⊢ 𝑌 = (Base‘𝐻) | 
| 118 |  | ghmgrp.q | . . 3
⊢  ⨣ =
(+g‘𝐻) | 
| 119 | 117, 118 | ismnd 18751 | . 2
⊢ (𝐻 ∈ Mnd ↔
(∀𝑎 ∈ 𝑌 ∀𝑏 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ∈ 𝑌 ∧ ∀𝑐 ∈ 𝑌 ((𝑎 ⨣ 𝑏) ⨣ 𝑐) = (𝑎 ⨣ (𝑏 ⨣ 𝑐))) ∧ ∃𝑑 ∈ 𝑌 ∀𝑎 ∈ 𝑌 ((𝑑 ⨣ 𝑎) = 𝑎 ∧ (𝑎 ⨣ 𝑑) = 𝑎))) | 
| 120 | 83, 116, 119 | sylanbrc 583 | 1
⊢ (𝜑 → 𝐻 ∈ Mnd) |