Step | Hyp | Ref
| Expression |
1 | | ghmgrp.f |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
2 | | ghmgrp.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
3 | | ghmgrp.y |
. . 3
⊢ 𝑌 = (Base‘𝐻) |
4 | | ghmgrp.p |
. . 3
⊢ + =
(+g‘𝐺) |
5 | | ghmgrp.q |
. . 3
⊢ ⨣ =
(+g‘𝐻) |
6 | | ghmgrp.1 |
. . 3
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
7 | | ghmgrp.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | | grpmnd 17782 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | 1, 2, 3, 4, 5, 6, 9 | mhmmnd 17890 |
. 2
⊢ (𝜑 → 𝐻 ∈ Mnd) |
11 | | fof 6352 |
. . . . . . . 8
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
12 | 6, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
13 | 12 | ad3antrrr 723 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝐹:𝑋⟶𝑌) |
14 | 7 | ad3antrrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝐺 ∈ Grp) |
15 | | simplr 787 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝑖 ∈ 𝑋) |
16 | | eqid 2824 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
17 | 2, 16 | grpinvcl 17820 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋) → ((invg‘𝐺)‘𝑖) ∈ 𝑋) |
18 | 14, 15, 17 | syl2anc 581 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((invg‘𝐺)‘𝑖) ∈ 𝑋) |
19 | 13, 18 | ffvelrnd 6608 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘((invg‘𝐺)‘𝑖)) ∈ 𝑌) |
20 | 1 | 3adant1r 1229 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
21 | 7, 17 | sylan 577 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((invg‘𝐺)‘𝑖) ∈ 𝑋) |
22 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
23 | 20, 21, 22 | mhmlem 17888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ (𝐹‘𝑖))) |
24 | 23 | adantlr 708 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ (𝐹‘𝑖))) |
25 | 24 | adantr 474 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ (𝐹‘𝑖))) |
26 | | eqid 2824 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
27 | 2, 4, 26, 16 | grplinv 17821 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋) → (((invg‘𝐺)‘𝑖) + 𝑖) = (0g‘𝐺)) |
28 | 27 | fveq2d 6436 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑖 ∈ 𝑋) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g‘𝐺))) |
29 | 14, 15, 28 | syl2anc 581 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g‘𝐺))) |
30 | 1, 2, 3, 4, 5, 6, 9, 26 | mhmid 17889 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
31 | 30 | ad3antrrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
32 | 29, 31 | eqtrd 2860 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(((invg‘𝐺)‘𝑖) + 𝑖)) = (0g‘𝐻)) |
33 | | simpr 479 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘𝑖) = 𝑎) |
34 | 33 | oveq2d 6920 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ (𝐹‘𝑖)) = ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ 𝑎)) |
35 | 25, 32, 34 | 3eqtr3rd 2869 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ 𝑎) = (0g‘𝐻)) |
36 | | oveq1 6911 |
. . . . . . 7
⊢ (𝑓 = (𝐹‘((invg‘𝐺)‘𝑖)) → (𝑓 ⨣ 𝑎) = ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ 𝑎)) |
37 | 36 | eqeq1d 2826 |
. . . . . 6
⊢ (𝑓 = (𝐹‘((invg‘𝐺)‘𝑖)) → ((𝑓 ⨣ 𝑎) = (0g‘𝐻) ↔ ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ 𝑎) = (0g‘𝐻))) |
38 | 37 | rspcev 3525 |
. . . . 5
⊢ (((𝐹‘((invg‘𝐺)‘𝑖)) ∈ 𝑌 ∧ ((𝐹‘((invg‘𝐺)‘𝑖)) ⨣ 𝑎) = (0g‘𝐻)) → ∃𝑓 ∈ 𝑌 (𝑓 ⨣ 𝑎) = (0g‘𝐻)) |
39 | 19, 35, 38 | syl2anc 581 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ∃𝑓 ∈ 𝑌 (𝑓 ⨣ 𝑎) = (0g‘𝐻)) |
40 | | foelrni 6490 |
. . . . 5
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) |
41 | 6, 40 | sylan 577 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) |
42 | 39, 41 | r19.29a 3287 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ∃𝑓 ∈ 𝑌 (𝑓 ⨣ 𝑎) = (0g‘𝐻)) |
43 | 42 | ralrimiva 3174 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑌 ∃𝑓 ∈ 𝑌 (𝑓 ⨣ 𝑎) = (0g‘𝐻)) |
44 | | eqid 2824 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
45 | 3, 5, 44 | isgrp 17781 |
. 2
⊢ (𝐻 ∈ Grp ↔ (𝐻 ∈ Mnd ∧ ∀𝑎 ∈ 𝑌 ∃𝑓 ∈ 𝑌 (𝑓 ⨣ 𝑎) = (0g‘𝐻))) |
46 | 10, 43, 45 | sylanbrc 580 |
1
⊢ (𝜑 → 𝐻 ∈ Grp) |