MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp Structured version   Visualization version   GIF version

Theorem ghmgrp 17892
Description: The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
ghmgrp.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmgrp (𝜑𝐻 ∈ Grp)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmgrp
Dummy variables 𝑎 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
3 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
4 ghmgrp.p . . 3 + = (+g𝐺)
5 ghmgrp.q . . 3 = (+g𝐻)
6 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmgrp.3 . . . 4 (𝜑𝐺 ∈ Grp)
8 grpmnd 17782 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
97, 8syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
101, 2, 3, 4, 5, 6, 9mhmmnd 17890 . 2 (𝜑𝐻 ∈ Mnd)
11 fof 6352 . . . . . . . 8 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
126, 11syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
1312ad3antrrr 723 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐹:𝑋𝑌)
147ad3antrrr 723 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐺 ∈ Grp)
15 simplr 787 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝑖𝑋)
16 eqid 2824 . . . . . . . 8 (invg𝐺) = (invg𝐺)
172, 16grpinvcl 17820 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1814, 15, 17syl2anc 581 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1913, 18ffvelrnd 6608 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌)
2013adant1r 1229 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
217, 17sylan 577 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
22 simpr 479 . . . . . . . . 9 ((𝜑𝑖𝑋) → 𝑖𝑋)
2320, 21, 22mhmlem 17888 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
2423adantlr 708 . . . . . . 7 (((𝜑𝑎𝑌) ∧ 𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
2524adantr 474 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
26 eqid 2824 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
272, 4, 26, 16grplinv 17821 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (((invg𝐺)‘𝑖) + 𝑖) = (0g𝐺))
2827fveq2d 6436 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
2914, 15, 28syl2anc 581 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
301, 2, 3, 4, 5, 6, 9, 26mhmid 17889 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
3130ad3antrrr 723 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(0g𝐺)) = (0g𝐻))
3229, 31eqtrd 2860 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (0g𝐻))
33 simpr 479 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹𝑖) = 𝑎)
3433oveq2d 6920 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3525, 32, 343eqtr3rd 2869 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻))
36 oveq1 6911 . . . . . . 7 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → (𝑓 𝑎) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3736eqeq1d 2826 . . . . . 6 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → ((𝑓 𝑎) = (0g𝐻) ↔ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)))
3837rspcev 3525 . . . . 5 (((𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌 ∧ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
3919, 35, 38syl2anc 581 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
40 foelrni 6490 . . . . 5 ((𝐹:𝑋onto𝑌𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
416, 40sylan 577 . . . 4 ((𝜑𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
4239, 41r19.29a 3287 . . 3 ((𝜑𝑎𝑌) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
4342ralrimiva 3174 . 2 (𝜑 → ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
44 eqid 2824 . . 3 (0g𝐻) = (0g𝐻)
453, 5, 44isgrp 17781 . 2 (𝐻 ∈ Grp ↔ (𝐻 ∈ Mnd ∧ ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻)))
4610, 43, 45sylanbrc 580 1 (𝜑𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3116  wrex 3117  wf 6118  ontowfo 6120  cfv 6122  (class class class)co 6904  Basecbs 16221  +gcplusg 16304  0gc0g 16452  Mndcmnd 17646  Grpcgrp 17775  invgcminusg 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779
This theorem is referenced by:  ghmfghm  18588  ghmabl  18590
  Copyright terms: Public domain W3C validator